Global Stock Selection with Hidden Markov Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Nguyet Nguyen & Dung Nguyen, 2015. "Hidden Markov Model for Stock Selection," Risks, MDPI, vol. 3(4), pages 1-19, October.
- Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019.
"Computational approaches and data analytics in financial services: A literature review,"
Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
- Dimitris Andriosopoulos & Michael Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Post-Print hal-02880149, HAL.
- Dimitris Andriosopoulos & Michael Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Post-Print hal-02879937, HAL.
- Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
- G. Kavitha & A. Udhayakumar & D. Nagarajan, 2013. "Stock Market Trend Analysis Using Hidden Markov Models," Papers 1311.4771, arXiv.org.
- Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1579-1580, October.
- George Hondroyiannis & Evangelia Papapetrou, 2001. "Macroeconomic influences on the stock market," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 25(1), pages 33-49, March.
- Andreas Humpe & Peter Macmillan, 2009. "Can macroeconomic variables explain long-term stock market movements? A comparison of the US and Japan," Applied Financial Economics, Taylor & Francis Journals, vol. 19(2), pages 111-119.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Doumpos, Michalis & Zopounidis, Constantin & Gounopoulos, Dimitrios & Platanakis, Emmanouil & Zhang, Wenke, 2023. "Operational research and artificial intelligence methods in banking," European Journal of Operational Research, Elsevier, vol. 306(1), pages 1-16.
- Matthew Wang & Yi-Hong Lin & Ilya Mikhelson, 2020. "Regime-Switching Factor Investing with Hidden Markov Models," JRFM, MDPI, vol. 13(12), pages 1-15, December.
- Edouard Ribes, 2022. "Financial planning & optimal retirement timing for physically intensive occupations," Working Papers hal-03219182, HAL.
- repec:ipg:wpaper:2014-080 is not listed on IDEAS
- Wang, Faming & Rong, Xueyun & Yin, Lei, 2024. "The uncertainty of fluctuation correlations in global stock markets," Finance Research Letters, Elsevier, vol. 66(C).
- Edouard A. Ribes, 2022. "Financial planning and optimal retirement timing for physically intensive occupations," SN Business & Economics, Springer, vol. 2(8), pages 1-28, August.
- Rania Jammazi & Duc Khuong Nguyen, 2015.
"Responses of international stock markets to oil price surges: a regime-switching perspective,"
Applied Economics, Taylor & Francis Journals, vol. 47(41), pages 4408-4422, September.
- Rania Jammazi & Duc Khuong Nguyen, 2014. "Responses of international stock markets to oil price surges: a regimeswitching perspective," Working Papers 2014-80, Department of Research, Ipag Business School.
- Anton Gerunov, 2023. "Stock Returns Under Different Market Regimes: An Application of Markov Switching Models to 24 European Indices," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 1, pages 18-35.
- Julio Cezar Soares Silva & Adiel Teixeira de Almeida Filho, 2023. "A systematic literature review on solution approaches for the index tracking problem in the last decade," Papers 2306.01660, arXiv.org, revised Jun 2023.
- Jean Robert Kala Kamdjoug & Hyacinthe Djanan Sando & Jules Raymond Kala & Arielle Ornela Ndassi Teutio & Sunil Tiwari & Samuel Fosso Wamba, 2024. "Data analytics-based auditing: a case study of fraud detection in the banking context," Annals of Operations Research, Springer, vol. 340(2), pages 1161-1188, September.
- Wang, Lu & Wu, Jiangbin & Cao, Yang & Hong, Yanran, 2022. "Forecasting renewable energy stock volatility using short and long-term Markov switching GARCH-MIDAS models: Either, neither or both?," Energy Economics, Elsevier, vol. 111(C).
- Naeem Mohseny-Tonekabony & Seyed Jafar Sadjadi & Emran Mohammadi & Mehrdad Tamiz & Dylan F. Jones, 2025. "Robust, extended goal programming with uncertainty sets: an application to a multi-objective portfolio selection problem leveraging DEA," Annals of Operations Research, Springer, vol. 346(2), pages 1497-1552, March.
- Reetam Majumder & Qing Ji & Nagaraj K. Neerchal, 2023. "Optimal Stock Portfolio Selection with a Multivariate Hidden Markov Model," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 177-198, May.
- Stancu Mirela Simina & Duţescu Adriana, 2021. "The impact of the Artificial Intelligence on the accounting profession, a literature’s assessment," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 15(1), pages 749-758, December.
- C. A. Valle & J. E. Beasley, 2019. "A nonlinear optimisation model for constructing minimal drawdown portfolios," Papers 1908.08684, arXiv.org.
- repec:ipg:wpaper:2014-085 is not listed on IDEAS
- Nguyet Nguyen, 2018. "Hidden Markov Model for Stock Trading," IJFS, MDPI, vol. 6(2), pages 1-17, March.
- Huidong Sun & Mustafa Raza Rabbani & Muhammad Safdar Sial & Siming Yu & José António Filipe & Jacob Cherian, 2020. "Identifying Big Data’s Opportunities, Challenges, and Implications in Finance," Mathematics, MDPI, vol. 8(10), pages 1-19, October.
- Milan Kumar Das & Anindya Goswami, 2019. "Testing of binary regime switching models using squeeze duration analysis," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-20, March.
- Hauzenberger, Niko & Huber, Florian & Klieber, Karin & Marcellino, Massimiliano, 2025.
"Bayesian neural networks for macroeconomic analysis,"
Journal of Econometrics, Elsevier, vol. 249(PC).
- Niko Hauzenberger & Florian Huber & Karin Klieber & Massimiliano Marcellino, 2022. "Bayesian Neural Networks for Macroeconomic Analysis," Papers 2211.04752, arXiv.org, revised Apr 2024.
- Hauzenberger , Niko & Huber, Florian & Klieber, Karin & Marcellino, Massimiliano, 2024. "Bayesian Neural Networks for Macroeconomic Analysis," CEPR Discussion Papers 19381, C.E.P.R. Discussion Papers.
- Lars-H. R. Siemers, 2024.
"On the Hamilton-HP Filter Controversy: Evidence from German Business Cycles,"
Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 20(3), pages 367-409, November.
- Lars-H. R. Siemers, 2024. "On the Hamilton-HP Filter Controversy: Evidence from German Business Cycles," MAGKS Papers on Economics 202421, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
- Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020.
"Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model,"
International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
- Heinrich, Markus & Carstensen, Kai & Reif, Magnus & Wolters, Maik, 2017. "Predicting Ordinary and Severe Recessions with a Three-State Markov-Switching Dynamic Factor Model. An Application to the German Business Cycle," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168206, Verein für Socialpolitik / German Economic Association.
- Kai Carstensen & Markus Heinrich & Magnus Reif & Maik H. Wolters, 2017. "Predicting Ordinary and Severe Recessions with a Three-State Markov-Switching Dynamic Factor Model. An Application to the German Business Cycle," CESifo Working Paper Series 6457, CESifo.
- Kai Carstensen & Markus Heinrich & Magnus Reif & Maik H. Wolters, 2019. "Predicting Ordinary and Severe Recessions with a Three-State Markov-Switching Dynamic Factor Model," Jena Economics Research Papers 2019-006, Friedrich-Schiller-University Jena.
More about this item
Keywords
global stocks; trading; machine learning; hidden Markov model; economics; regimes; stock ranking; stocks’ factors; economics indicators;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:9:y:2020:i:1:p:9-:d:472764. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.