Author
Listed:
- Greg Taylor
(School of Risk and Actuarial Studies, University of New South Wales, Randwick, NSW 2052, Australia)
Abstract
This paper is concerned with the choice of data granularity for the application of the Mack chain ladder model to forecast a loss reserve. It is a sequel to a related paper by Taylor, which considers the same question for the EDF chain ladder model. As in the earlier paper, it considers the question as to whether a decrease in the time unit leads to an increase or decrease in the variance of the loss reserve estimate. The question of whether a Mack chain ladder that is valid for one time unit (here called mesh size) remains so for another is investigated. The conditions under which the model does remain valid are established. There are various ways in which the mesh size of a data triangle may be varied, two of them of particular interest. The paper examines one of these, namely that in which development periods are preserved. Two versions of this are investigated: 1. the aggregation of development periods without change to accident periods; 2. the aggregation of accident periods without change to development periods. Taylor found that, in the case of the Poisson chain ladder, an increase in mesh size always increases the variance of the loss reserve estimate (subject to mild technical conditions). The case of the Mack chain ladder is more nuanced in that an increase in variance is not always guaranteed. Whether or not an increase or decrease occurs depends on the numerical values of certain of the age-to-age factors actually observed. The threshold values of the age-to-age factors at which an increase transitions to a decrease in variance are calculated. In the case of a change in the mesh of development periods, but with no change to accident periods, these values are computed for one particular data set, where it is found that variance always increases. It is conjectured that data sets in which this does not happen would be relatively rare. The situation is somewhat different when changes in mesh size over accident periods are considered. Here, the question of an increase or decrease in variance is more complex, and, in general terms, the occurrence of an increase in variance with increased mesh size is less likely.
Suggested Citation
Greg Taylor, 2025.
"The Mack Chain Ladder and Data Granularity for Preserved Development Periods,"
Risks, MDPI, vol. 13(7), pages 1-32, July.
Handle:
RePEc:gam:jrisks:v:13:y:2025:i:7:p:132-:d:1696457
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:13:y:2025:i:7:p:132-:d:1696457. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.