IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v12y2024i8p132-d1459347.html
   My bibliography  Save this article

Quick Introduction into the General Framework of Portfolio Theory

Author

Listed:
  • Philipp Kreins

    (Institut für Mathematik, RWTH Aachen University, D-52062 Aachen, Germany
    These authors contributed equally to this work.)

  • Stanislaus Maier-Paape

    (Institut für Mathematik, RWTH Aachen University, D-52062 Aachen, Germany
    These authors contributed equally to this work.)

  • Qiji Jim Zhu

    (Department of Mathematics, Western Michigan University, 1903 W Michigan Ave, Kalamazoo, MI 49008-5248, USA
    These authors contributed equally to this work.)

Abstract

This survey offers a succinct overview of the General Framework of Portfolio Theory (GFPT), consolidating Markowitz portfolio theory, the growth optimal portfolio theory, and the theory of risk measures. Central to this framework is the use of convex analysis and duality, reflecting the concavity of reward functions and the convexity of risk measures due to diversification effects. Furthermore, practical considerations, such as managing multiple risks in bank balance sheets, have expanded the theory to encompass vector risk analysis. The goal of this survey is to provide readers with a concise tour of the GFPT’s key concepts and practical applications without delving into excessive technicalities. Instead, it directs interested readers to the comprehensive monograph of Maier-Paape, Júdice, Platen, and Zhu (2023) for detailed proofs and further exploration.

Suggested Citation

  • Philipp Kreins & Stanislaus Maier-Paape & Qiji Jim Zhu, 2024. "Quick Introduction into the General Framework of Portfolio Theory," Risks, MDPI, vol. 12(8), pages 1-24, August.
  • Handle: RePEc:gam:jrisks:v:12:y:2024:i:8:p:132-:d:1459347
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/12/8/132/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/12/8/132/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jonathan M. Borwein & Qiji J. Zhu, 2016. "A Variational Approach to Lagrange Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 727-756, December.
    2. Elyés Jouini & Moncef Meddeb & Nizar Touzi, 2004. "Vector-valued coherent risk measures," Finance and Stochastics, Springer, vol. 8(4), pages 531-552, November.
    3. repec:dau:papers:123456789/353 is not listed on IDEAS
    4. Rockafellar, R. Tyrrell & Uryasev, Stan & Zabarankin, Michael, 2006. "Master funds in portfolio analysis with general deviation measures," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 743-778, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bazovkin, Pavel, 2014. "Geometrical framework for robust portfolio optimization," Discussion Papers in Econometrics and Statistics 01/14, University of Cologne, Institute of Econometrics and Statistics.
    2. Stanislaus Maier-Paape & Qiji Jim Zhu, 2017. "A General Framework for Portfolio Theory. Part I: theory and various models," Papers 1710.04579, arXiv.org.
    3. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    4. Stanislaus Maier-Paape & Qiji Jim Zhu, 2018. "A General Framework for Portfolio Theory—Part I: Theory and Various Models," Risks, MDPI, vol. 6(2), pages 1-35, May.
    5. David E. Allen & Michael McAleer & Abhay K. Singh, 2016. "A Multi-Criteria Portfolio Analysis of Hedge Fund Strategies," Documentos de Trabajo del ICAE 2017-03, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    6. Cosimo Munari, 2020. "Multi-utility representations of incomplete preferences induced by set-valued risk measures," Papers 2009.04151, arXiv.org.
    7. Zachary Feinstein & Birgit Rudloff, 2018. "Scalar multivariate risk measures with a single eligible asset," Papers 1807.10694, arXiv.org, revised Feb 2021.
    8. Wang, Wei & Xu, Huifu & Ma, Tiejun, 2023. "Optimal scenario-dependent multivariate shortfall risk measure and its application in risk capital allocation," European Journal of Operational Research, Elsevier, vol. 306(1), pages 322-347.
    9. repec:dau:papers:123456789/2278 is not listed on IDEAS
    10. Allen, D.E. & McAleer, M.J. & Powell, R.J. & Singh, A.K., 2015. "Down-side Risk Metrics as Portfolio Diversification Strategies across the GFC," Econometric Institute Research Papers EI2015-32, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    11. Balbás, Alejandro & Balbás, Raquel & Mayoral, Silvia, 2006. "Optimizing Measures of Risk: A Simplex-like Algorithm," DEE - Working Papers. Business Economics. WB 6534, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    12. Benati, S. & Conde, E., 2022. "A relative robust approach on expected returns with bounded CVaR for portfolio selection," European Journal of Operational Research, Elsevier, vol. 296(1), pages 332-352.
    13. El Kalak, Izidin & Azevedo, Alcino & Hudson, Robert, 2016. "Reviewing the hedge funds literature I: Hedge funds and hedge funds' managerial characteristics," International Review of Financial Analysis, Elsevier, vol. 48(C), pages 85-97.
    14. William B. Haskell & Wenjie Huang & Huifu Xu, 2018. "Preference Elicitation and Robust Optimization with Multi-Attribute Quasi-Concave Choice Functions," Papers 1805.06632, arXiv.org.
    15. Andreas H. Hamel & Frank Heyde, 2021. "Set-Valued T -Translative Functions and Their Applications in Finance," Mathematics, MDPI, vol. 9(18), pages 1-33, September.
    16. Harry Joe & Haijun Li, 2011. "Tail Risk of Multivariate Regular Variation," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 671-693, December.
    17. repec:spo:wpmain:info:hdl:2441/5rkqqmvrn4tl22s9mc4b1h6b4 is not listed on IDEAS
    18. repec:spo:wpecon:info:hdl:2441/5rkqqmvrn4tl22s9mc4b1h6b4 is not listed on IDEAS
    19. Bakshi, Gurdip & Panayotov, George, 2010. "First-passage probability, jump models, and intra-horizon risk," Journal of Financial Economics, Elsevier, vol. 95(1), pages 20-40, January.
    20. Ekeland Ivar & Schachermayer Walter, 2011. "Law invariant risk measures on L∞ (ℝd)," Statistics & Risk Modeling, De Gruyter, vol. 28(3), pages 195-225, September.
    21. Cascos Fernández, Ignacio & Molchanov, Ilya, 2006. "Multivariate risks and depth-trimmed regions," DES - Working Papers. Statistics and Econometrics. WS ws063815, Universidad Carlos III de Madrid. Departamento de Estadística.
    22. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    23. Daniel Lacker, 2018. "Liquidity, Risk Measures, and Concentration of Measure," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 813-837, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:12:y:2024:i:8:p:132-:d:1459347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.