IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v12y2024i1p15-d1321870.html
   My bibliography  Save this article

Maximum Pseudo-Likelihood Estimation of Copula Models and Moments of Order Statistics

Author

Listed:
  • Alexandra Dias

    (School for Business and Society, University of York, York YO10 5DD, UK)

Abstract

It has been shown that, despite being consistent and in some cases efficient, maximum pseudo-likelihood (MPL) estimation for copula models overestimates the level of dependence, especially for small samples with a low level of dependence. This is especially relevant in finance and insurance applications when data are scarce. We show that the canonical MPL method uses the mean of order statistics, and we propose to use the median or the mode instead. We show that the MPL estimators proposed are consistent and asymptotically normal. In a simulation study, we compare the finite sample performance of the proposed estimators with that of the original MPL and the inversion method estimators based on Kendall’s tau and Spearman’s rho. In our results, the modified MPL estimators, especially the one based on the mode of the order statistics, have a better finite sample performance both in terms of bias and mean square error. An application to general insurance data shows that the level of dependence estimated between different products can vary substantially with the estimation method used.

Suggested Citation

  • Alexandra Dias, 2024. "Maximum Pseudo-Likelihood Estimation of Copula Models and Moments of Order Statistics," Risks, MDPI, vol. 12(1), pages 1-26, January.
  • Handle: RePEc:gam:jrisks:v:12:y:2024:i:1:p:15-:d:1321870
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/12/1/15/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/12/1/15/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nasri, Bouchra R. & Rémillard, Bruno N. & Bouezmarni, Taoufik, 2019. "Semi-parametric copula-based models under non-stationarity," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 347-365.
    2. Genest, Christian & Segers, Johan, 2010. "On the covariance of the asymptotic empirical copula process," LIDAM Reprints ISBA 2010017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Genest, Christian & Segers, Johan, 2010. "On the covariance of the asymptotic empirical copula process," LIDAM Reprints ISBA 2010038, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Joe, Harry, 2005. "Asymptotic efficiency of the two-stage estimation method for copula-based models," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 401-419, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mainik, Georg, 2015. "Risk aggregation with empirical margins: Latin hypercubes, empirical copulas, and convergence of sum distributions," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 197-216.
    2. Bücher Axel, 2014. "A note on nonparametric estimation of bivariate tail dependence," Statistics & Risk Modeling, De Gruyter, vol. 31(2), pages 1-12, June.
    3. Holger Dette & Marc Hallin & Tobias Kley & Stanislav Volgushev, 2011. "Of Copulas, Quantiles, Ranks and Spectra - An L1-Approach to Spectral Analysis," Working Papers ECARES ECARES 2011-038, ULB -- Universite Libre de Bruxelles.
    4. Hofert, Marius & Oldford, Wayne, 2018. "Visualizing dependence in high-dimensional data: An application to S&P 500 constituent data," Econometrics and Statistics, Elsevier, vol. 8(C), pages 161-183.
    5. Christian Genest & Johanna Nešlehová & Jean-François Quessy, 2012. "Tests of symmetry for bivariate copulas," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(4), pages 811-834, August.
    6. Nadja Klein & Thomas Kneib, 2020. "Directional bivariate quantiles: a robust approach based on the cumulative distribution function," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(2), pages 225-260, June.
    7. Hofert, Marius & Prasad, Avinash & Zhu, Mu, 2022. "Multivariate time-series modeling with generative neural networks," Econometrics and Statistics, Elsevier, vol. 23(C), pages 147-164.
    8. Bücher, Axel & Kojadinovic, Ivan & Rohmer, Tom & Segers, Johan, 2014. "Detecting changes in cross-sectional dependence in multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 111-128.
    9. Aleksy Leeuwenkamp & Wentao Hu, 2023. "New general dependence measures: construction, estimation and application to high-frequency stock returns," Papers 2309.00025, arXiv.org.
    10. Nagler, Thomas & Krüger, Daniel & Min, Aleksey, 2022. "Stationary vine copula models for multivariate time series," Journal of Econometrics, Elsevier, vol. 227(2), pages 305-324.
    11. Genest Christian & Mesfioui Mhamed & Nešlehová Johanna G., 2019. "On the asymptotic covariance of the multivariate empirical copula process," Dependence Modeling, De Gruyter, vol. 7(1), pages 279-291, January.
    12. Berghaus, Betina & Bücher, Axel, 2014. "Nonparametric tests for tail monotonicity," Journal of Econometrics, Elsevier, vol. 180(2), pages 117-126.
    13. Gery Geenens & Arthur Charpentier & Davy Paindaveine, 2014. "Probit Transformation for Nonparametric Kernel Estimation of the Copula Density," Working Papers ECARES ECARES 2014-23, ULB -- Universite Libre de Bruxelles.
    14. Antoine Bergeron & Pierre Dutilleul & Carole Beaulieu & Taoufik Bouezmarni, 2022. "Dynamic Copulas for Monotonic Dependence Change in Time Series," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 683-693, November.
    15. Bücher, Axel & Ruppert, Martin, 2013. "Consistent testing for a constant copula under strong mixing based on the tapered block multiplier technique," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 208-229.
    16. Georg Mainik, 2015. "Risk aggregation with empirical margins: Latin hypercubes, empirical copulas, and convergence of sum distributions," Papers 1508.02749, arXiv.org.
    17. Bouteska, Ahmed & Sharif, Taimur & Abedin, Mohammad Zoynul, 2023. "COVID-19 and stock returns: Evidence from the Markov switching dependence approach," Research in International Business and Finance, Elsevier, vol. 64(C).
    18. Li, Feng & Kang, Yanfei, 2018. "Improving forecasting performance using covariate-dependent copula models," International Journal of Forecasting, Elsevier, vol. 34(3), pages 456-476.
    19. Guillermo Martínez-Flórez & Artur J. Lemonte & Germán Moreno-Arenas & Roger Tovar-Falón, 2022. "The Bivariate Unit-Sinh-Normal Distribution and Its Related Regression Model," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    20. Warshaw, Evan, 2019. "Extreme dependence and risk spillovers across north american equity markets," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 237-251.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:12:y:2024:i:1:p:15-:d:1321870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.