IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i7p718-d524477.html
   My bibliography  Save this article

Partial Anti-Synchronization of the Fractional-Order Chaotic Systems through Dynamic Feedback Control

Author

Listed:
  • Runlong Peng

    (School of Mathematics and Statistics, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China)

  • Cuimei Jiang

    (School of Mathematics and Statistics, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China)

  • Rongwei Guo

    (School of Mathematics and Statistics, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China)

Abstract

This paper investigates the partial anti-synchronization problem of fractional-order chaotic systems through the dynamic feedback control method. Firstly, a necessary and sufficient condition is proposed, by which the existence of the partial anti-synchronization problem is proved. Then, an algorithm is given and used to obtain all solutions of this problem. Moreover, the partial anti-synchronization problem of the fractional-order chaotic systems is realized through the dynamic feedback control method. It is noted that the designed controllers are single-input controllers. Finally, two illustrative examples with numerical simulations are used to verify the correctness and effectiveness of the proposed results.

Suggested Citation

  • Runlong Peng & Cuimei Jiang & Rongwei Guo, 2021. "Partial Anti-Synchronization of the Fractional-Order Chaotic Systems through Dynamic Feedback Control," Mathematics, MDPI, vol. 9(7), pages 1-13, March.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:7:p:718-:d:524477
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/7/718/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/7/718/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lu, Jun Guo & Chen, Guanrong, 2006. "A note on the fractional-order Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 685-688.
    2. Xuan-Bing Yang & Yi-Gang He & Chun-Lai Li, 2018. "Dynamics Feature and Synchronization of a Robust Fractional-Order Chaotic System," Complexity, Hindawi, vol. 2018, pages 1-12, December.
    3. Yu, Yongguang & Li, Han-Xiong & Wang, Sha & Yu, Junzhi, 2009. "Dynamic analysis of a fractional-order Lorenz chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1181-1189.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mo, Wenjun & Bao, Haibo, 2024. "Mean-square bounded synchronization of fractional-order chaotic Lur’e systems under deception attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deepika, Deepika & Kaur, Sandeep & Narayan, Shiv, 2018. "Uncertainty and disturbance estimator based robust synchronization for a class of uncertain fractional chaotic system via fractional order sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 196-203.
    2. Peng, Yuexi & Sun, Kehui & Peng, Dong & Ai, Wei, 2019. "Dynamics of a higher dimensional fractional-order chaotic map," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 96-107.
    3. Rongwei Guo & Yaru Zhang & Cuimei Jiang, 2021. "Synchronization of Fractional-Order Chaotic Systems with Model Uncertainty and External Disturbance," Mathematics, MDPI, vol. 9(8), pages 1-12, April.
    4. Ge, Zheng-Ming & Yi, Chang-Xian, 2007. "Chaos in a nonlinear damped Mathieu system, in a nano resonator system and in its fractional order systems," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 42-61.
    5. Hanshuo Qiu & Xiangzi Zhang & Huaixiao Yue & Jizhao Liu, 2023. "A Novel Eighth-Order Hyperchaotic System and Its Application in Image Encryption," Mathematics, MDPI, vol. 11(19), pages 1-29, September.
    6. Momani, Shaher & Odibat, Zaid, 2007. "Numerical comparison of methods for solving linear differential equations of fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1248-1255.
    7. Petráš, Ivo, 2008. "A note on the fractional-order Chua’s system," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 140-147.
    8. Li, Zengshan & Chen, Diyi & Ma, Mengmeng & Zhang, Xinguang & Wu, Yonghong, 2017. "Feigenbaum's constants in reverse bifurcation of fractional-order Rössler system," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 116-123.
    9. Leng, Xiangxin & Gu, Shuangquan & Peng, Qiqi & Du, Baoxiang, 2021. "Study on a four-dimensional fractional-order system with dissipative and conservative properties," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    10. Silva-Juárez, Alejandro & Tlelo-Cuautle, Esteban & de la Fraga, Luis Gerardo & Li, Rui, 2021. "Optimization of the Kaplan-Yorke dimension in fractional-order chaotic oscillators by metaheuristics," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    11. Kamal, F.M. & Elsonbaty, A. & Elsaid, A., 2021. "A novel fractional nonautonomous chaotic circuit model and its application to image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    12. Andrade, Dana I. & Specchia, Stefania & Fuziki, Maria E.K. & Oliveira, Jessica R.P. & Tusset, Angelo M. & Lenzi, Giane G., 2024. "Dynamic analysis and SDRE control applied in a mutating autocatalyst with chaotic behavior," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    13. Huang, Xiuqi & Wang, Xiangjun, 2021. "Regularity of fractional stochastic convolution and its application to fractional stochastic chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    14. Zhang, Chaoxia & Yu, Simin, 2011. "Generation of multi-wing chaotic attractor in fractional order system," Chaos, Solitons & Fractals, Elsevier, vol. 44(10), pages 845-850.
    15. Khanzadeh, Alireza & Pourgholi, Mahdi, 2016. "Robust Synchronization of Fractional-Order Chaotic Systems at a Pre-Specified Time Using Sliding Mode Controller with Time-Varying Switching Surfaces," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 69-77.
    16. Ahmad, Shabir & Ullah, Aman & Akgül, Ali, 2021. "Investigating the complex behaviour of multi-scroll chaotic system with Caputo fractal-fractional operator," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    17. Tavazoei, Mohammad Saleh & Haeri, Mohammad, 2008. "Synchronization of chaotic fractional-order systems via active sliding mode controller," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 57-70.
    18. Munoz-Pacheco, J.M. & Zambrano-Serrano, E. & Volos, Ch. & Tacha, O.I. & Stouboulos, I.N. & Pham, V.-T., 2018. "A fractional order chaotic system with a 3D grid of variable attractors," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 69-78.
    19. Chen, Yiming & Ke, Xiaohong & Wei, Yanqiao, 2015. "Numerical algorithm to solve system of nonlinear fractional differential equations based on wavelets method and the error analysis," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 475-488.
    20. Sharma, Vivek & Shukla, Manoj & Sharma, B.B., 2018. "Unknown input observer design for a class of fractional order nonlinear systems," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 96-107.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:7:p:718-:d:524477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.