IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i18p2308-d638616.html
   My bibliography  Save this article

Flow Increment through Network Expansion

Author

Listed:
  • Adrian Marius Deaconu

    (Department of Mathematics and Computer Science, Faculty of Mathematics and Computer Science, Transilvania University of Brasov, 50003 Brasov, Romania)

  • Luciana Majercsik

    (Department of Mathematics and Computer Science, Faculty of Mathematics and Computer Science, Transilvania University of Brasov, 50003 Brasov, Romania)

Abstract

The network expansion problem is a very important practical optimization problem when there is a need to increment the flow through an existing network of transportation, electricity, water, gas, etc. In this problem, the flow augmentation can be achieved either by increasing the capacities on the existing arcs, or by adding new arcs to the network. Both operations are coming with an expansion cost. In this paper, the problem of finding the minimum network expansion cost so that the modified network can transport a given amount of flow from the source node to the sink node is studied. A strongly polynomial algorithm is deduced to solve the problem.

Suggested Citation

  • Adrian Marius Deaconu & Luciana Majercsik, 2021. "Flow Increment through Network Expansion," Mathematics, MDPI, vol. 9(18), pages 1-9, September.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:18:p:2308-:d:638616
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/18/2308/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/18/2308/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao Zhang & Xiaohui Huang, 2019. "Discrete Newton Method," Springer Optimization and Its Applications, in: Ding-Zhu Du & Panos M. Pardalos & Zhao Zhang (ed.), Nonlinear Combinatorial Optimization, pages 37-56, Springer.
    2. James B. Orlin, 1993. "A Faster Strongly Polynomial Minimum Cost Flow Algorithm," Operations Research, INFORMS, vol. 41(2), pages 338-350, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Gang, 2024. "Order assignment and two-stage integrated scheduling in fruit and vegetable supply chains," Omega, Elsevier, vol. 124(C).
    2. Shoshana Anily, 1996. "The vehicle‐routing problem with delivery and back‐haul options," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(3), pages 415-434, April.
    3. László A. Végh, 2017. "A Strongly Polynomial Algorithm for Generalized Flow Maximization," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 179-211, January.
    4. Amirmahdi Tafreshian & Neda Masoud & Yafeng Yin, 2020. "Frontiers in Service Science: Ride Matching for Peer-to-Peer Ride Sharing: A Review and Future Directions," Service Science, INFORMS, vol. 12(2-3), pages 44-60, June.
    5. László A. Végh, 2014. "Concave Generalized Flows with Applications to Market Equilibria," Mathematics of Operations Research, INFORMS, vol. 39(2), pages 573-596, May.
    6. Ravindra K. Ahuja & Dorit S. Hochbaum, 2008. "TECHNICAL NOTE---Solving Linear Cost Dynamic Lot-Sizing Problems in O ( n log n ) Time," Operations Research, INFORMS, vol. 56(1), pages 255-261, February.
    7. Sharma, Anuj & Verma, Vanita & Kaur, Prabhjot & Dahiya, Kalpana, 2015. "An iterative algorithm for two level hierarchical time minimization transportation problem," European Journal of Operational Research, Elsevier, vol. 246(3), pages 700-707.
    8. Zsolt T. Kosztyán & István Szalkai, 2020. "Multimode resource-constrained project scheduling in flexible projects," Journal of Global Optimization, Springer, vol. 76(1), pages 211-241, January.
    9. I.N. Kamal Abadi & Nicholas G. Hall & Chelliah Sriskandarajah, 2000. "Minimizing Cycle Time in a Blocking Flowshop," Operations Research, INFORMS, vol. 48(1), pages 177-180, February.
    10. Ahmed Redha Mahlous, 2017. "SCMC: An Efficient Scheme for Minimizing Energy in WSNs Using a Set Cover Approach," Future Internet, MDPI, vol. 9(4), pages 1-18, December.
    11. Mehdi Ghiyasvand, 2019. "An $$O(n(m+n\log n)\log n)$$O(n(m+nlogn)logn) time algorithm to solve the minimum cost tension problem," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 957-969, April.
    12. Ding, Honglin & Li, Jianping & Lih, Ko-Wei, 2014. "Approximation algorithms for solving the constrained arc routing problem in mixed graphs," European Journal of Operational Research, Elsevier, vol. 239(1), pages 80-88.
    13. Elisa Letizia & Paolo Barucca & Fabrizio Lillo, 2018. "Resolution of ranking hierarchies in directed networks," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-25, February.
    14. Niu, Yi-Feng & Song, Yi-Fan & Xu, Xiu-Zhen & Zhao, Xia, 2022. "Efficient reliability computation of a multi-state flow network with cost constraint," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    15. Hochbaum, Dorit S., 2002. "Solving integer programs over monotone inequalities in three variables: A framework for half integrality and good approximations," European Journal of Operational Research, Elsevier, vol. 140(2), pages 291-321, July.
    16. Maiko Shigeno & Satoru Iwata & S. Thomas McCormick, 2000. "Relaxed Most Negative Cycle and Most Positive Cut Canceling Algorithms for Minimum Cost Flow," Mathematics of Operations Research, INFORMS, vol. 25(1), pages 76-104, February.
    17. Laszlo A. Vegh, 2011. "Concave Generalized Flows with Applications to Market Equilibria," Papers 1109.3893, arXiv.org, revised Apr 2012.
    18. Mattia, Sara & Rossi, Fabrizio & Servilio, Mara & Smriglio, Stefano, 2017. "Staffing and scheduling flexible call centers by two-stage robust optimization," Omega, Elsevier, vol. 72(C), pages 25-37.
    19. Tseytlin, Yulia & Heese, H. Sebastian, 2019. "Allocation under a general substitution structure," European Journal of Operational Research, Elsevier, vol. 277(2), pages 492-506.
    20. Konstantinos Paparrizos & Nikolaos Samaras & Angelo Sifaleras, 2015. "Exterior point simplex-type algorithms for linear and network optimization problems," Annals of Operations Research, Springer, vol. 229(1), pages 607-633, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:18:p:2308-:d:638616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.