IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i4p618-d346809.html
   My bibliography  Save this article

Almost Sure Convergence for the Maximum and Minimum of Normal Vector Sequences

Author

Listed:
  • Zhicheng Chen

    (State Key Laboratory of Mechanics and Control of Mechanical Structures, Institute of Nano Science and Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    Department of Mathematics, Henan Institute of Science and Technology, Xinxiang 453003, China)

  • Hongyun Zhang

    (Department of Mathematics, Henan Institute of Science and Technology, Xinxiang 453003, China)

  • Xinsheng Liu

    (State Key Laboratory of Mechanics and Control of Mechanical Structures, Institute of Nano Science and Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

Abstract

In this paper, we prove the almost sure convergences for the maximum and minimum of nonstationary and stationary standardized normal vector sequences under some suitable conditions.

Suggested Citation

  • Zhicheng Chen & Hongyun Zhang & Xinsheng Liu, 2020. "Almost Sure Convergence for the Maximum and Minimum of Normal Vector Sequences," Mathematics, MDPI, vol. 8(4), pages 1-11, April.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:618-:d:346809
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/4/618/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/4/618/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fahrner, I. & Stadtmüller, U., 1998. "On almost sure max-limit theorems," Statistics & Probability Letters, Elsevier, vol. 37(3), pages 229-236, March.
    2. Csáki, Endre & Gonchigdanzan, Khurelbaatar, 2002. "Almost sure limit theorems for the maximum of stationary Gaussian sequences," Statistics & Probability Letters, Elsevier, vol. 58(2), pages 195-203, June.
    3. Berkes, István & Csáki, Endre, 2001. "A universal result in almost sure central limit theory," Stochastic Processes and their Applications, Elsevier, vol. 94(1), pages 105-134, July.
    4. Gonchigdanzan, Khurelbaatar, 2008. "An almost sure limit theorem for the product of partial sums with stable distribution," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3170-3175, December.
    5. Chen, Shouquan & Lin, Zhengyan, 2006. "Almost sure max-limits for nonstationary Gaussian sequence," Statistics & Probability Letters, Elsevier, vol. 76(11), pages 1175-1184, June.
    6. Ibragimov, Ildar & Lifshits, Mikhail, 1998. "On the convergence of generalized moments in almost sure central limit theorem," Statistics & Probability Letters, Elsevier, vol. 40(4), pages 343-351, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luísa Pereira & Zhongquan Tan, 2017. "Almost Sure Convergence for the Maximum of Nonstationary Random Fields," Journal of Theoretical Probability, Springer, vol. 30(3), pages 996-1013, September.
    2. Tan, Zhongquan & Peng, Zuoxiang, 2009. "Almost sure convergence for non-stationary random sequences," Statistics & Probability Letters, Elsevier, vol. 79(7), pages 857-863, April.
    3. Panga, Zacarias & Pereira, Luísa, 2019. "On the almost sure convergence for the joint version of maxima and minima of stationary sequences," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.
    4. Berkes, István, 2001. "The law of large numbers with exceptional sets," Statistics & Probability Letters, Elsevier, vol. 55(4), pages 431-438, December.
    5. Hashorva, Enkelejd & Weng, Zhichao, 2013. "Limit laws for extremes of dependent stationary Gaussian arrays," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 320-330.
    6. Giuliano, Rita & Macci, Claudio & Pacchiarotti, Barbara, 2019. "Large deviations for weighted means of random vectors defined in terms of suitable Lévy processes," Statistics & Probability Letters, Elsevier, vol. 150(C), pages 13-22.
    7. Bercu, B., 2004. "On the convergence of moments in the almost sure central limit theorem for martingales with statistical applications," Stochastic Processes and their Applications, Elsevier, vol. 111(1), pages 157-173, May.
    8. Zuoxiang Peng & Zhongquan Tan & Saralees Nadarajah, 2011. "Almost sure central limit theorem for the products of U-statistics," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 73(1), pages 61-76, January.
    9. Stadtmüller, U., 2002. "Almost sure versions of distributional limit theorems for certain order statistics," Statistics & Probability Letters, Elsevier, vol. 58(4), pages 413-426, July.
    10. Csáki, Endre & Gonchigdanzan, Khurelbaatar, 2002. "Almost sure limit theorems for the maximum of stationary Gaussian sequences," Statistics & Probability Letters, Elsevier, vol. 58(2), pages 195-203, June.
    11. Fahrner, Ingo, 2000. "An extension of the almost sure max-limit theorem," Statistics & Probability Letters, Elsevier, vol. 49(1), pages 93-103, August.
    12. Giuliano, Rita & Macci, Claudio, 2018. "Large deviations for some logarithmic means in the case of random variables with thin tails," Statistics & Probability Letters, Elsevier, vol. 138(C), pages 47-56.
    13. Berkes, István & Weber, Michel, 2006. "Almost sure versions of the Darling-Erdös theorem," Statistics & Probability Letters, Elsevier, vol. 76(3), pages 280-290, February.
    14. Berkes, István & Csáki, Endre, 2001. "A universal result in almost sure central limit theory," Stochastic Processes and their Applications, Elsevier, vol. 94(1), pages 105-134, July.
    15. Tan, Zhongquan, 2013. "An almost sure limit theorem for the maxima of smooth stationary Gaussian processes," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2135-2141.
    16. Bercu, Bernard & Nourdin, Ivan & Taqqu, Murad S., 2010. "Almost sure central limit theorems on the Wiener space," Stochastic Processes and their Applications, Elsevier, vol. 120(9), pages 1607-1628, August.
    17. Xu, Feng & Wu, Qunying, 2017. "Almost sure central limit theorem for self-normalized partial sums of ρ−-mixing sequences," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 17-27.
    18. Berkes, István & Horváth, Lajos, 2001. "The logarithmic average of sample extremes is asymptotically normal," Stochastic Processes and their Applications, Elsevier, vol. 91(1), pages 77-98, January.
    19. Wu, Qunying, 2011. "Almost sure limit theorems for stable distributions," Statistics & Probability Letters, Elsevier, vol. 81(6), pages 662-672, June.
    20. Berkes, István & Csáki, Endre & Csörgo, Sándor, 1999. "Almost sure limit theorems for the St. Petersburg game," Statistics & Probability Letters, Elsevier, vol. 45(1), pages 23-30, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:618-:d:346809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.