IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v83y2013i1p320-330.html
   My bibliography  Save this article

Limit laws for extremes of dependent stationary Gaussian arrays

Author

Listed:
  • Hashorva, Enkelejd
  • Weng, Zhichao

Abstract

In this paper we show that the componentwise maxima of weakly dependent bivariate stationary Gaussian triangular arrays converge in distribution after appropriate normalization to Hüsler–Reiss distribution. Under a strong dependence assumption, we prove that the limit distribution of the maxima is a mixture of a bivariate Gaussian distribution and Hüsler–Reiss distribution. An important new finding of our paper is that the componentwise maxima and componentwise minima remain asymptotically independent even in the settings of Hüsler and Reiss (1989) allowing further for weak dependence. Further we derive an almost sure limit theorem under the Berman condition for the components of the triangular array.

Suggested Citation

  • Hashorva, Enkelejd & Weng, Zhichao, 2013. "Limit laws for extremes of dependent stationary Gaussian arrays," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 320-330.
  • Handle: RePEc:eee:stapro:v:83:y:2013:i:1:p:320-330
    DOI: 10.1016/j.spl.2012.09.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016771521200363X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2012.09.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fahrner, I. & Stadtmüller, U., 1998. "On almost sure max-limit theorems," Statistics & Probability Letters, Elsevier, vol. 37(3), pages 229-236, March.
    2. Csáki, Endre & Gonchigdanzan, Khurelbaatar, 2002. "Almost sure limit theorems for the maximum of stationary Gaussian sequences," Statistics & Probability Letters, Elsevier, vol. 58(2), pages 195-203, June.
    3. Manjunath, B.G. & Frick, Melanie & Reiss, Rolf-Dieter, 2012. "Some notes on extremal discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 103(1), pages 107-115, January.
    4. Hashorva, Enkelejd, 2005. "Elliptical triangular arrays in the max-domain of attraction of Hüsler-Reiss distribution," Statistics & Probability Letters, Elsevier, vol. 72(2), pages 125-135, April.
    5. Tan, Zhongquan & Peng, Zuoxiang, 2009. "Almost sure convergence for non-stationary random sequences," Statistics & Probability Letters, Elsevier, vol. 79(7), pages 857-863, April.
    6. Frick, Melanie & Reiss, Rolf-Dieter, 2010. "Limiting distributions of maxima under triangular schemes," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2346-2357, November.
    7. Peng, Zuoxiang & Cao, Lunfeng & Nadarajah, Saralees, 2010. "Asymptotic distributions of maxima of complete and incomplete samples from multivariate stationary Gaussian sequences," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2641-2647, November.
    8. Hüsler, Jürg & Reiss, Rolf-Dieter, 1989. "Maxima of normal random vectors: Between independence and complete dependence," Statistics & Probability Letters, Elsevier, vol. 7(4), pages 283-286, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinhui Guo & Yingyin Lu, 2023. "Joint behavior of point processes of clusters and partial sums for stationary bivariate Gaussian triangular arrays," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(1), pages 17-37, February.
    2. Hashorva, Enkelejd & Peng, Liang & Weng, Zhichao, 2015. "Maxima of a triangular array of multivariate Gaussian sequence," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 62-72.
    3. Enkelejd Hashorva & Zuoxiang Peng & Zhichao Weng, 2016. "Higher-order expansions of distributions of maxima in a Hüsler-Reiss model," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 181-196, March.
    4. Das, Bikramjit & Engelke, Sebastian & Hashorva, Enkelejd, 2015. "Extremal behavior of squared Bessel processes attracted by the Brown–Resnick process," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 780-796.
    5. Tan, Zhongquan, 2013. "An almost sure limit theorem for the maxima of smooth stationary Gaussian processes," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2135-2141.
    6. Withers, Christopher S. & Nadarajah, Saralees, 2015. "The joint distribution of the maximum and minimum of an AR(1) process," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 77-84.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frick, Melanie & Reiss, Rolf-Dieter, 2013. "Expansions and penultimate distributions of maxima of bivariate normal random vectors," Statistics & Probability Letters, Elsevier, vol. 83(11), pages 2563-2568.
    2. Tan, Zhongquan, 2013. "An almost sure limit theorem for the maxima of smooth stationary Gaussian processes," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2135-2141.
    3. Manjunath, B.G. & Frick, Melanie & Reiss, Rolf-Dieter, 2012. "Some notes on extremal discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 103(1), pages 107-115, January.
    4. Panga, Zacarias & Pereira, Luísa, 2019. "On the almost sure convergence for the joint version of maxima and minima of stationary sequences," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.
    5. Luísa Pereira & Zhongquan Tan, 2017. "Almost Sure Convergence for the Maximum of Nonstationary Random Fields," Journal of Theoretical Probability, Springer, vol. 30(3), pages 996-1013, September.
    6. Zhicheng Chen & Hongyun Zhang & Xinsheng Liu, 2020. "Almost Sure Convergence for the Maximum and Minimum of Normal Vector Sequences," Mathematics, MDPI, vol. 8(4), pages 1-11, April.
    7. Opitz, T., 2013. "Extremal t processes: Elliptical domain of attraction and a spectral representation," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 409-413.
    8. Hashorva, Enkelejd & Peng, Liang & Weng, Zhichao, 2015. "Maxima of a triangular array of multivariate Gaussian sequence," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 62-72.
    9. Enkelejd Hashorva & Zuoxiang Peng & Zhichao Weng, 2016. "Higher-order expansions of distributions of maxima in a Hüsler-Reiss model," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 181-196, March.
    10. Hashorva, Enkelejd, 2006. "On the multivariate Hüsler-Reiss distribution attracting the maxima of elliptical triangular arrays," Statistics & Probability Letters, Elsevier, vol. 76(18), pages 2027-2035, December.
    11. Weng, Zhichao & Liao, Xin, 2017. "Second order expansions of distributions of maxima of bivariate Gaussian triangular arrays under power normalization," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 33-43.
    12. Tan, Zhongquan & Peng, Zuoxiang, 2009. "Almost sure convergence for non-stationary random sequences," Statistics & Probability Letters, Elsevier, vol. 79(7), pages 857-863, April.
    13. Hashorva, Enkelejd, 2006. "A novel class of bivariate max-stable distributions," Statistics & Probability Letters, Elsevier, vol. 76(10), pages 1047-1055, May.
    14. Frick, Melanie & Reiss, Rolf-Dieter, 2010. "Limiting distributions of maxima under triangular schemes," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2346-2357, November.
    15. Berkes, István & Csáki, Endre & Csörgo, Sándor, 1999. "Almost sure limit theorems for the St. Petersburg game," Statistics & Probability Letters, Elsevier, vol. 45(1), pages 23-30, October.
    16. Robert, Christian Y., 2013. "Some new classes of stationary max-stable random fields," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1496-1503.
    17. Michael Falk & René Michel, 2006. "Testing for Tail Independence in Extreme Value models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(2), pages 261-290, June.
    18. Dominique Guegan & Bertrand Hassani, 2011. "Multivariate VaRs for Operational Risk Capital Computation: a Vine Structure Approach," Documents de travail du Centre d'Economie de la Sorbonne 11017, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    19. Falk, Michael & Reiss, Rolf-Dieter, 2005. "On Pickands coordinates in arbitrary dimensions," Journal of Multivariate Analysis, Elsevier, vol. 92(2), pages 426-453, February.
    20. Dominique Guegan & Bertrand Hassani, 2012. "Multivariate VaRs for Operational Risk Capital Computation: a Vine Structure Approach," Post-Print halshs-00587706, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:83:y:2013:i:1:p:320-330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.