IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i3p410-d331961.html
   My bibliography  Save this article

A New Individual-Based Model to Simulate Malware Propagation in Wireless Sensor Networks

Author

Listed:
  • Farrah Kristel Batista

    (Department of Applied Mathematics, University of Salamanca, 37008-Salamanca, Spain)

  • Angel Martín del Rey

    (Institute of Fundamental Physics and Mathematics, Department of Applied Mathematics, University of Salamanca, 37008-Salamanca, Spain)

  • Araceli Queiruga-Dios

    (Institute of Fundamental Physics and Mathematics, Department of Applied Mathematics, University of Salamanca, 37008-Salamanca, Spain)

Abstract

Wireless Sensor Networks (WSNs) are a set of sensor devices deployed in a given area that form a network without a pre-established architecture. Recently, malware has increased as a potential vulnerability for the Internet of Things, and consequently for these networks. The spread of malware on wireless sensor networks has been studied from different perspectives, excluding individual characteristics in most of the models proposed. The primary goal of this work is to introduce an Agent-Based Model for analysing malware propagation on these networks, and its agents, coefficients and transition rules are detailed. Finally, some simulations of the proposed model are included.

Suggested Citation

  • Farrah Kristel Batista & Angel Martín del Rey & Araceli Queiruga-Dios, 2020. "A New Individual-Based Model to Simulate Malware Propagation in Wireless Sensor Networks," Mathematics, MDPI, vol. 8(3), pages 1-23, March.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:3:p:410-:d:331961
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/3/410/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/3/410/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chu, Zhuang & Yang, Biao & Ha, Chang Yong & Ahn, Kwangwon, 2018. "Modeling GDP fluctuations with agent-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 572-581.
    2. Anderson, Taylor M. & Dragićević, Suzana, 2018. "Network-agent based model for simulating the dynamic spatial network structure of complex ecological systems," Ecological Modelling, Elsevier, vol. 389(C), pages 19-32.
    3. Liping Feng & Lipeng Song & Qingshan Zhao & Hongbin Wang, 2015. "Modeling and Stability Analysis of Worm Propagation in Wireless Sensor Network," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-8, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guiyun Liu & Jieyong Chen & Zhongwei Liang & Zhimin Peng & Junqiang Li, 2021. "Dynamical Analysis and Optimal Control for a SEIR Model Based on Virus Mutation in WSNs," Mathematics, MDPI, vol. 9(9), pages 1-16, April.
    2. Avinash Vijayarangan & Veena Narayanan & Vijayarangan Natarajan & Srikanth Raghavendran, 2022. "Novel Authentication Protocols Based on Quadratic Diophantine Equations," Mathematics, MDPI, vol. 10(17), pages 1-10, September.
    3. Guiyun Liu & Junqiang Li & Zhongwei Liang & Zhimin Peng, 2021. "Dynamical Behavior Analysis of a Time-Delay SIRS-L Model in Rechargeable Wireless Sensor Networks," Mathematics, MDPI, vol. 9(16), pages 1-21, August.
    4. Luis Hernández-Álvarez & Juan José Bullón Pérez & Farrah Kristel Batista & Araceli Queiruga-Dios, 2022. "Security Threats and Cryptographic Protocols for Medical Wearables," Mathematics, MDPI, vol. 10(6), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zizhen Zhang & Soumen Kundu & Ruibin Wei, 2019. "A Delayed Epidemic Model for Propagation of Malicious Codes in Wireless Sensor Network," Mathematics, MDPI, vol. 7(5), pages 1-18, May.
    2. Guiyun Liu & Zhimin Peng & Zhongwei Liang & Xiaojing Zhong & Xinhai Xia, 2022. "Analysis and Control of Malware Mutation Model in Wireless Rechargeable Sensor Network with Charging Delay," Mathematics, MDPI, vol. 10(14), pages 1-28, July.
    3. Meng, Yangyang & Tian, Xiangliang & Li, Zhongwen & Zhou, Wei & Zhou, Zhijie & Zhong, Maohua, 2020. "Comparison analysis on complex topological network models of urban rail transit: A case study of Shenzhen Metro in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    4. Kumari, Sangeeta & Upadhyay, Ranjit Kumar, 2021. "Exploring the behavior of malware propagation on mobile wireless sensor networks: Stability and control analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 246-269.
    5. Ji, Guseon & Dai, Bingcun & Park, Sung-Pil & Ahn, Kwangwon, 2020. "The origin of collective phenomena in firm sizes," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:3:p:410-:d:331961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.