IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i1p96-d306049.html
   My bibliography  Save this article

Numerical Solutions for Multi-Term Fractional Order Differential Equations with Fractional Taylor Operational Matrix of Fractional Integration

Author

Listed:
  • İbrahim Avcı

    (Department of Mathematics, Eastern Mediterranean University, Famagusta, TR 99628, Northern Cyprus, via Mersin-10, Turkey)

  • Nazim I. Mahmudov

    (Department of Mathematics, Eastern Mediterranean University, Famagusta, TR 99628, Northern Cyprus, via Mersin-10, Turkey)

Abstract

In this article, we propose a numerical method based on the fractional Taylor vector for solving multi-term fractional differential equations. The main idea of this method is to reduce the given problems to a set of algebraic equations by utilizing the fractional Taylor operational matrix of fractional integration. This system of equations can be solved efficiently. Some numerical examples are given to demonstrate the accuracy and applicability. The results show that the presented method is efficient and applicable.

Suggested Citation

  • İbrahim Avcı & Nazim I. Mahmudov, 2020. "Numerical Solutions for Multi-Term Fractional Order Differential Equations with Fractional Taylor Operational Matrix of Fractional Integration," Mathematics, MDPI, vol. 8(1), pages 1-24, January.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:1:p:96-:d:306049
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/1/96/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/1/96/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weihua Deng, 2012. "Numerical Schemes for Fractional Ordinary Differential Equations," Chapters, in: Peep Miidla (ed.), Numerical Modelling, IntechOpen.
    2. S. Saha Ray & R. K. Bera, 2004. "Solution of an extraordinary differential equation by Adomian decomposition method," Journal of Applied Mathematics, Hindawi, vol. 2004, pages 1-8, January.
    3. Pundikala Veeresha & Doddabhadrappla Gowda Prakasha & Dumitru Baleanu, 2019. "An Efficient Numerical Technique for the Nonlinear Fractional Kolmogorov–Petrovskii–Piskunov Equation," Mathematics, MDPI, vol. 7(3), pages 1-18, March.
    4. Arikoglu, Aytac & Ozkol, Ibrahim, 2007. "Solution of fractional differential equations by using differential transform method," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1473-1481.
    5. Vasily E. Tarasov, 2019. "On History of Mathematical Economics: Application of Fractional Calculus," Mathematics, MDPI, vol. 7(6), pages 1-28, June.
    6. Jianping Liu & Xia Li & Limeng Wu, 2016. "An Operational Matrix of Fractional Differentiation of the Second Kind of Chebyshev Polynomial for Solving Multiterm Variable Order Fractional Differential Equation," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-10, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Etemad, Sina & Avci, Ibrahim & Kumar, Pushpendra & Baleanu, Dumitru & Rezapour, Shahram, 2022. "Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09 virus and its generalized Caputo-type version," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moghaddam, B.P. & Machado, J.A.T. & Behforooz, H., 2017. "An integro quadratic spline approach for a class of variable-order fractional initial value problems," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 354-360.
    2. Ertuğrul Karaçuha & Vasil Tabatadze & Kamil Karaçuha & Nisa Özge Önal & Esra Ergün, 2020. "Deep Assessment Methodology Using Fractional Calculus on Mathematical Modeling and Prediction of Gross Domestic Product per Capita of Countries," Mathematics, MDPI, vol. 8(4), pages 1-18, April.
    3. Mahmoud, Gamal M. & Arafa, Ayman A. & Abed-Elhameed, Tarek M. & Mahmoud, Emad E., 2017. "Chaos control of integer and fractional orders of chaotic Burke–Shaw system using time delayed feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 680-692.
    4. Eriqat, Tareq & El-Ajou, Ahmad & Oqielat, Moa'ath N. & Al-Zhour, Zeyad & Momani, Shaher, 2020. "A New Attractive Analytic Approach for Solutions of Linear and Nonlinear Neutral Fractional Pantograph Equations," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    5. Heydari, M.H. & Hooshmandasl, M.R. & Maalek Ghaini, F.M. & Cattani, C., 2016. "Wavelets method for solving fractional optimal control problems," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 139-154.
    6. Alam, M. Shamsul & Huq, M. Ashraful & Hasan, M. Kamrul & Rahman, M. Saifur, 2021. "A new technique for solving a class of strongly nonlinear oscillatory equations," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    7. Jorge E. Macías-Díaz, 2019. "Numerically Efficient Methods for Variational Fractional Wave Equations: An Explicit Four-Step Scheme," Mathematics, MDPI, vol. 7(11), pages 1-27, November.
    8. Raja, Muhammad Asif Zahoor & Samar, Raza & Manzar, Muhammad Anwar & Shah, Syed Muslim, 2017. "Design of unsupervised fractional neural network model optimized with interior point algorithm for solving Bagley–Torvik equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 132(C), pages 139-158.
    9. Arsen Pskhu & Sergo Rekhviashvili, 2020. "Fractional Diffusion–Wave Equation with Application in Electrodynamics," Mathematics, MDPI, vol. 8(11), pages 1-13, November.
    10. Damarla, Seshu Kumar & Kundu, Madhusree, 2015. "Numerical solution of multi-order fractional differential equations using generalized triangular function operational matrices," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 189-203.
    11. Monica Aureliana Petcu & Liliana Ionescu-Feleaga & Bogdan-Ștefan Ionescu & Dumitru-Florin Moise, 2023. "A Decade for the Mathematics : Bibliometric Analysis of Mathematical Modeling in Economics, Ecology, and Environment," Mathematics, MDPI, vol. 11(2), pages 1-30, January.
    12. Arsen Pskhu, 2020. "Green Functions of the First Boundary-Value Problem for a Fractional Diffusion—Wave Equation in Multidimensional Domains," Mathematics, MDPI, vol. 8(4), pages 1-15, March.
    13. Rehman, Mujeeb ur & Idrees, Amna & Saeed, Umer, 2017. "A quadrature method for numerical solutions of fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 38-49.
    14. Owolabi, Kolade M. & Atangana, Abdon, 2019. "Computational study of multi-species fractional reaction-diffusion system with ABC operator," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 280-289.
    15. Shi, Jianping & He, Ke & Fang, Hui, 2022. "Chaos, Hopf bifurcation and control of a fractional-order delay financial system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 348-364.
    16. Deng, Jingwei & Zhao, Lijing & Wu, Yujiang, 2015. "Efficient algorithms for solving the fractional ordinary differential equations," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 196-216.
    17. Turkyilmazoglu, Mustafa & Altanji, Mohamed, 2023. "Fractional models of falling object with linear and quadratic frictional forces considering Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    18. Alberto Antonini & Valentina Anna Lia Salomoni, 2023. "Modelling Fractional Advection–Diffusion Processes via the Adomian Decomposition," Mathematics, MDPI, vol. 11(12), pages 1-30, June.
    19. Muhammad Imran Liaqat & Ali Akgül & Hanaa Abu-Zinadah, 2023. "Analytical Investigation of Some Time-Fractional Black–Scholes Models by the Aboodh Residual Power Series Method," Mathematics, MDPI, vol. 11(2), pages 1-19, January.
    20. Salah Abuasad & Ahmet Yildirim & Ishak Hashim & Samsul Ariffin Abdul Karim & J.F. Gómez-Aguilar, 2019. "Fractional Multi-Step Differential Transformed Method for Approximating a Fractional Stochastic SIS Epidemic Model with Imperfect Vaccination," IJERPH, MDPI, vol. 16(6), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:1:p:96-:d:306049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.