IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v104y2017icp680-692.html

Chaos control of integer and fractional orders of chaotic Burke–Shaw system using time delayed feedback control

Author

Listed:
  • Mahmoud, Gamal M.
  • Arafa, Ayman A.
  • Abed-Elhameed, Tarek M.
  • Mahmoud, Emad E.

Abstract

The aim of this paper is to investigate the control of chaotic Burke-Shaw system using Pyragas method. This system is derived from Lorenz system which has several applications in physics and engineering (e.g. secure communications). The linear stability and the existence of Hopf bifurcation of this system are investigated. Based on the characteristic equation, a theorem is stated and proved. This theorem is used to calculate the interval values of the time delay τ at which this system is stable (unstable). By establishing appropriate time delay τ and feedback strength K ranges, one of the unstable equilibria of this system can be controlled to be stable.

Suggested Citation

  • Mahmoud, Gamal M. & Arafa, Ayman A. & Abed-Elhameed, Tarek M. & Mahmoud, Emad E., 2017. "Chaos control of integer and fractional orders of chaotic Burke–Shaw system using time delayed feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 680-692.
  • Handle: RePEc:eee:chsofr:v:104:y:2017:i:c:p:680-692
    DOI: 10.1016/j.chaos.2017.09.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917303922
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.09.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Chengdai & Cao, Jinde & Xiao, Min & Alsaedi, Ahmed & Alsaadi, Fuad E., 2017. "Controlling bifurcation in a delayed fractional predator–prey system with incommensurate orders," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 293-310.
    2. Wen, Shao-Fang & Shen, Yong-Jun & Yang, Shao-Pu & Wang, Jun, 2017. "Dynamical response of Mathieu–Duffing oscillator with fractional-order delayed feedback," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 54-62.
    3. Arikoglu, Aytac & Ozkol, Ibrahim, 2007. "Solution of fractional differential equations by using differential transform method," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1473-1481.
    4. Gamal M. Mahmoud & Mansour E. Ahmed & Emad E. Mahmoud, 2008. "Analysis Of Hyperchaotic Complex Lorenz Systems," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 19(10), pages 1477-1494.
    5. Yan, Ye & Kou, Chunhai, 2012. "Stability analysis for a fractional differential model of HIV infection of CD4+ T-cells with time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(9), pages 1572-1585.
    6. Liu, Yuji, 2016. "On piecewise continuous solutions of higher order impulsive fractional differential equations and applications," Applied Mathematics and Computation, Elsevier, vol. 287, pages 38-49.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdelfattah Mustafa & Reda S. Salama & Mokhtar Mohamed, 2023. "Analysis of Generalized Nonlinear Quadrature for Novel Fractional-Order Chaotic Systems Using Sinc Shape Function," Mathematics, MDPI, vol. 11(8), pages 1-17, April.
    2. Li, Keyi & Sha, Hongsheng & Guo, Rongwei, 2025. "Disturbance estimator-based reinforcement learning robust stabilization control for a class of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 198(C).
    3. Anguiano-Gijón, Carlos Alberto & Muñoz-Vázquez, Aldo Jonathan & Sánchez-Torres, Juan Diego & Romero-Galván, Gerardo & Martínez-Reyes, Fernando, 2019. "On predefined-time synchronisation of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 172-178.
    4. Uğur Erkin Kocamaz & Alper Göksu & Harun Taşkın & Yılmaz Uyaroğlu, 2021. "Control of chaotic two-predator one-prey model with single state control signals," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1563-1572, August.
    5. Shi, Jianping & He, Ke & Fang, Hui, 2022. "Chaos, Hopf bifurcation and control of a fractional-order delay financial system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 348-364.
    6. Runzi Luo & Jiaojiao Fu & Haipeng Su, 2019. "The Exponential Stabilization of a Class of n-D Chaotic Systems via the Exact Solution Method," Complexity, Hindawi, vol. 2019, pages 1-7, May.
    7. Ren, Lei & Lin, Ming-Hung & Abdulwahab, Abdulkareem & Ma, Jun & Saberi-Nik, Hassan, 2023. "Global dynamical analysis of the integer and fractional 4D hyperchaotic Rabinovich system," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    8. Jiao, Xubin & Li, Xiaodi & Yang, Youping, 2022. "Dynamics and bifurcations of a Filippov Leslie-Gower predator-prey model with group defense and time delay," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    9. Lin, Jinchai & Fan, Ruguo & Tan, Xianchun & Zhu, Kaiwei, 2021. "Dynamic decision and coordination in a low-carbon supply chain considering the retailer's social preference," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
    10. Liu, Ping & Zhang, Yulan & Mohammed, Khidhair Jasim & Lopes, António M. & Saberi-Nik, Hassan, 2023. "The global dynamics of a new fractional-order chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moghaddam, B.P. & Machado, J.A.T. & Behforooz, H., 2017. "An integro quadratic spline approach for a class of variable-order fractional initial value problems," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 354-360.
    2. Skwara, Urszula & Mozyrska, Dorota & Aguiar, Maira & Stollenwerk, Nico, 2024. "Dynamics of vector-borne diseases through the lens of systems incorporating fractional-order derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    3. Pratap, A. & Raja, R. & Cao, J. & Lim, C.P. & Bagdasar, O., 2019. "Stability and pinning synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous activations," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 241-260.
    4. Mihailović, D.T. & Kostić, V. & Balaž, I. & Cvetković, Lj., 2014. "Complexity and asymptotic stability in the process of biochemical substance exchange in a coupled ring of cells," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 30-43.
    5. Ding, Dawei & Yan, Jie & Wang, Nian & Liang, Dong, 2017. "Pinning synchronization of fractional order complex-variable dynamical networks with time-varying coupling," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 41-50.
    6. Eriqat, Tareq & El-Ajou, Ahmad & Oqielat, Moa'ath N. & Al-Zhour, Zeyad & Momani, Shaher, 2020. "A New Attractive Analytic Approach for Solutions of Linear and Nonlinear Neutral Fractional Pantograph Equations," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    7. Zuoxun Wang & Wenzhu Zhang & Lei Ma & Guijuan Wang, 2022. "Several Control Problems of a Class of Complex Nonlinear Systems Based on UDE," Mathematics, MDPI, vol. 10(8), pages 1-15, April.
    8. Jajarmi, Amin & Baleanu, Dumitru, 2018. "A new fractional analysis on the interaction of HIV with CD4+ T-cells," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 221-229.
    9. Fang, Qingxiang & Peng, Jigen, 2018. "Synchronization of fractional-order linear complex networks with directed coupling topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 542-553.
    10. Joel Alba-Pérez & Jorge E. Macías-Díaz, 2019. "Analysis of Structure-Preserving Discrete Models for Predator-Prey Systems with Anomalous Diffusion," Mathematics, MDPI, vol. 7(12), pages 1-31, December.
    11. Heydari, M.H. & Hooshmandasl, M.R. & Maalek Ghaini, F.M. & Cattani, C., 2016. "Wavelets method for solving fractional optimal control problems," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 139-154.
    12. Yu Liu & Yan Zhou & Biyao Guo, 2023. "Hopf Bifurcation, Periodic Solutions, and Control of a New 4D Hyperchaotic System," Mathematics, MDPI, vol. 11(12), pages 1-14, June.
    13. Mahmoud, Emad E. & Abo-Dahab, S.M., 2018. "Dynamical properties and complex anti synchronization with applications to secure communications for a novel chaotic complex nonlinear model," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 273-284.
    14. Mahmoud, Emad E., 2013. "Modified projective phase synchronization of chaotic complex nonlinear systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 89(C), pages 69-85.
    15. Liang, Yuqin & Jia, Yunfeng, 2022. "Stability and Hopf bifurcation of a diffusive plankton model with time-delay and mixed nonlinear functional responses," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    16. Alam, M. Shamsul & Huq, M. Ashraful & Hasan, M. Kamrul & Rahman, M. Saifur, 2021. "A new technique for solving a class of strongly nonlinear oscillatory equations," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    17. Xie, Jiaquan & Xie, Zhikuan & Xu, Huidong & Li, Zhanlong & Shi, Wei & Ren, Jiani & Shi, Haoming, 2024. "Resonance and attraction domain analysis of asymmetric duffing systems with fractional damping in two degrees of freedom," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    18. Raja, Muhammad Asif Zahoor & Samar, Raza & Manzar, Muhammad Anwar & Shah, Syed Muslim, 2017. "Design of unsupervised fractional neural network model optimized with interior point algorithm for solving Bagley–Torvik equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 132(C), pages 139-158.
    19. Mahmoud, Gamal M. & Mahmoud, Emad E., 2010. "Synchronization and control of hyperchaotic complex Lorenz system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(12), pages 2286-2296.
    20. Ruiqing Shi & Ting Lu & Cuihong Wang, 2019. "Dynamic Analysis of a Fractional-Order Model for Hepatitis B Virus with Holling II Functional Response," Complexity, Hindawi, vol. 2019, pages 1-13, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:104:y:2017:i:c:p:680-692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.