IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i1p139-d310704.html
   My bibliography  Save this article

Nash Equilibrium Investment-Reinsurance Strategies for an Insurer and a Reinsurer with Intertemporal Restrictions and Common Interests

Author

Listed:
  • Yanfei Bai

    (School of Business Administration, Hunan University, Changsha 410082, China)

  • Zhongbao Zhou

    (School of Business Administration, Hunan University, Changsha 410082, China)

  • Rui Gao

    (School of Mathematics, Hunan University, Changsha 410082, China)

  • Helu Xiao

    (School of Business, Hunan Normal University, Changsha 410081, China)

Abstract

This paper investigates the generalized multi-period mean-variance investment-reinsurance optimization model in a discrete-time framework for a general insurance company that contains a reinsurer and an insurer. The intertemporal restrictions and the common interests of the reinsurer and the insurer are considered. The common goal of the reinsurer and the insurer is to maximize the expectation of the weighted sum of their wealth processes and minimize the corresponding variance. Based on the game method, we obtain the Nash equilibrium investment-reinsurance strategies for the above-proposed model and find out the equilibrium strategies when unilateral interest is considered. In addition, the Nash equilibrium investment-reinsurance strategies are deduced under two special premium calculated principles (i.e., the expected value premium principle and the variance value premium principle). We theoretically study the effect of the intertemporal restrictions on Nash equilibrium investment-reinsurance strategies and find the effect depends on the value of some parameters, which differs from the previous researches that generally believed that intertemporal restrictions would make investors avoid risks. Finally, we perform corresponding numerical analyses to verify our theoretical results.

Suggested Citation

  • Yanfei Bai & Zhongbao Zhou & Rui Gao & Helu Xiao, 2020. "Nash Equilibrium Investment-Reinsurance Strategies for an Insurer and a Reinsurer with Intertemporal Restrictions and Common Interests," Mathematics, MDPI, vol. 8(1), pages 1-26, January.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:1:p:139-:d:310704
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/1/139/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/1/139/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Huiming & Deng, Chao & Yue, Shengjie & Deng, Yingchun, 2015. "Optimal reinsurance and investment problem for an insurer with counterparty risk," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 242-254.
    2. Anthropelos, Michail & Boonen, Tim J., 2020. "Nash equilibria in optimal reinsurance bargaining," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 196-205.
    3. Sid Browne, 1995. "Optimal Investment Policies for a Firm With a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Mathematics of Operations Research, INFORMS, vol. 20(4), pages 937-958, November.
    4. Jieming Zhou & Xiangqun Yang & Ya Huang, 2017. "Robust optimal investment and proportional reinsurance toward joint interests of the insurer and the reinsurer," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(21), pages 10733-10757, November.
    5. Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
    6. Deng, Chao & Zeng, Xudong & Zhu, Huiming, 2018. "Non-zero-sum stochastic differential reinsurance and investment games with default risk," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1144-1158.
    7. Wang, Ning & Zhang, Nan & Jin, Zhuo & Qian, Linyi, 2019. "Robust non-zero-sum investment and reinsurance game with default risk," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 115-132.
    8. Duni Hu & Hailong Wang, 2018. "Time-consistent investment and reinsurance under relative performance concerns," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(7), pages 1693-1717, April.
    9. Suleyman Basak & Georgy Chabakauri, 2010. "Dynamic Mean-Variance Asset Allocation," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 2970-3016, August.
    10. Browne, S., 1995. "Optimal Investment Policies for a Firm with a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Papers 95-08, Columbia - Graduate School of Business.
    11. Zeng, Yan & Li, Zhongfei, 2011. "Optimal time-consistent investment and reinsurance policies for mean-variance insurers," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 145-154, July.
    12. Chen, Lv & Shen, Yang, 2019. "Stochastic Stackelberg differential reinsurance games under time-inconsistent mean–variance framework," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 120-137.
    13. Zhou, Zhongbao & Xiao, Helu & Yin, Jialing & Zeng, Ximei & Lin, Ling, 2016. "Pre-commitment vs. time-consistent strategies for the generalized multi-period portfolio optimization with stochastic cash flows," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 187-202.
    14. O. L. V. Costa & R. B. Nabholz, 2007. "Multiperiod Mean-Variance Optimization with Intertemporal Restrictions," Journal of Optimization Theory and Applications, Springer, vol. 134(2), pages 257-274, August.
    15. Pun, Chi Seng & Wong, Hoi Ying, 2016. "Robust non-zero-sum stochastic differential reinsurance game," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 169-177.
    16. Chen, Shumin & Liu, Yanchu & Weng, Chengguo, 2019. "Dynamic risk-sharing game and reinsurance contract design," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 216-231.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rolandas Drejeris & Martynas Rusteika, 2022. "New Approach to the Public Authorities’ Activities Development in the Crop Insurance System: Lithuanian Case," Agriculture, MDPI, vol. 12(8), pages 1-15, August.
    2. Zilan Liu & Yijun Wang & Ya Huang & Jieming Zhou, 2022. "Optimal Time-Consistent Investment and Premium Control Strategies for Insurers with Constraint under the Heston Model," Mathematics, MDPI, vol. 10(7), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helu Xiao & Tiantian Ren & Yanfei Bai & Zhongbao Zhou, 2019. "Time-Consistent Investment-Reinsurance Strategies for the Insurer and the Reinsurer under the Generalized Mean-Variance Criteria," Mathematics, MDPI, vol. 7(9), pages 1-25, September.
    2. Zhu, Huainian & Cao, Ming & Zhang, Chengke, 2019. "Time-consistent investment and reinsurance strategies for mean-variance insurers with relative performance concerns under the Heston model," Finance Research Letters, Elsevier, vol. 30(C), pages 280-291.
    3. Yang Shen & Bin Zou, 2021. "Mean-Variance Investment and Risk Control Strategies -- A Time-Consistent Approach via A Forward Auxiliary Process," Papers 2101.03954, arXiv.org.
    4. Junna Bi & Jun Cai & Yan Zeng, 2021. "Equilibrium reinsurance-investment strategies with partial information and common shock dependence," Annals of Operations Research, Springer, vol. 307(1), pages 1-24, December.
    5. Li, Yongwu & Li, Zhongfei, 2013. "Optimal time-consistent investment and reinsurance strategies for mean–variance insurers with state dependent risk aversion," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 86-97.
    6. Yanfei Bai & Zhongbao Zhou & Helu Xiao & Rui Gao & Feimin Zhong, 2019. "A hybrid stochastic differential reinsurance and investment game with bounded memory," Papers 1910.09834, arXiv.org.
    7. Yanfei Bai & Zhongbao Zhou & Helu Xiao & Rui Gao & Feimin Zhong, 2021. "A stochastic Stackelberg differential reinsurance and investment game with delay in a defaultable market," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(3), pages 341-381, December.
    8. Wang, Ning & Zhang, Nan & Jin, Zhuo & Qian, Linyi, 2021. "Stochastic differential investment and reinsurance games with nonlinear risk processes and VaR constraints," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 168-184.
    9. Guan, Guohui & Hu, Xiang, 2022. "Equilibrium mean–variance reinsurance and investment strategies for a general insurance company under smooth ambiguity," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    10. Bai, Yanfei & Zhou, Zhongbao & Xiao, Helu & Gao, Rui & Zhong, Feimin, 2022. "A hybrid stochastic differential reinsurance and investment game with bounded memory," European Journal of Operational Research, Elsevier, vol. 296(2), pages 717-737.
    11. Shen, Yang & Zou, Bin, 2021. "Mean–variance investment and risk control strategies — A time-consistent approach via a forward auxiliary process," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 68-80.
    12. Nicole Bäuerle & Ulrich Rieder, 2013. "Optimal Deterministic Investment Strategies for Insurers," Risks, MDPI, vol. 1(3), pages 1-18, November.
    13. Alia, Ishak & Chighoub, Farid & Sohail, Ayesha, 2016. "A characterization of equilibrium strategies in continuous-time mean–variance problems for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 212-223.
    14. Yan Zhang & Peibiao Zhao & Rufei Ma, 2022. "Robust Optimal Excess-of-Loss Reinsurance and Investment Problem with more General Dependent Claim Risks and Defaultable Risk," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2743-2777, December.
    15. Guan, Guohui & Hu, Jiaqi & Liang, Zongxia, 2022. "Robust equilibrium strategies in a defined benefit pension plan game," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 193-217.
    16. Nian Yao & Zhiming Yang, 2017. "Optimal excess-of-loss reinsurance and investment problem for an insurer with default risk under a stochastic volatility model," Papers 1704.08234, arXiv.org.
    17. Zilan Liu & Yijun Wang & Ya Huang & Jieming Zhou, 2022. "Optimal Time-Consistent Investment and Premium Control Strategies for Insurers with Constraint under the Heston Model," Mathematics, MDPI, vol. 10(7), pages 1-22, March.
    18. Liang, Zongxia & Song, Min, 2015. "Time-consistent reinsurance and investment strategies for mean–variance insurer under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 66-76.
    19. Li, Zhongfei & Zeng, Yan & Lai, Yongzeng, 2012. "Optimal time-consistent investment and reinsurance strategies for insurers under Heston’s SV model," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 191-203.
    20. Xue, Xiaole & Wei, Pengyu & Weng, Chengguo, 2019. "Derivatives trading for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 40-53.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:1:p:139-:d:310704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.