IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i11p2070-d448030.html
   My bibliography  Save this article

Two-Agent Pareto-Scheduling of Minimizing Total Weighted Completion Time and Total Weighted Late Work

Author

Listed:
  • Yuan Zhang

    (School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China
    These authors contributed equally to this work.)

  • Zhichao Geng

    (School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China
    These authors contributed equally to this work.)

  • Jinjiang Yuan

    (School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China
    These authors contributed equally to this work.)

Abstract

We investigate the Pareto-scheduling problem with two competing agents on a single machine to minimize the total weighted completion time of agent A ’s jobs and the total weighted late work of agent B ’s jobs, the B -jobs having a common due date. Since this problem is known to be NP-hard, we present two pseudo-polynomial-time exact algorithms to generate the Pareto frontier and an approximation algorithm to generate a ( 1 + ϵ ) -approximate Pareto frontier. In addition, some numerical tests are undertaken to evaluate the effectiveness of our algorithms.

Suggested Citation

  • Yuan Zhang & Zhichao Geng & Jinjiang Yuan, 2020. "Two-Agent Pareto-Scheduling of Minimizing Total Weighted Completion Time and Total Weighted Late Work," Mathematics, MDPI, vol. 8(11), pages 1-17, November.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:11:p:2070-:d:448030
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/11/2070/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/11/2070/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yunqiang Yin & T. C. E. Cheng & Du-Juan Wang & Chin-Chia Wu, 2017. "Two-agent flowshop scheduling to maximize the weighted number of just-in-time jobs," Journal of Scheduling, Springer, vol. 20(4), pages 313-335, August.
    2. Yuan Zhang & Jinjiang Yuan, 2019. "A note on a two-agent scheduling problem related to the total weighted late work," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 989-999, April.
    3. Wan, Long & Yuan, Jinjiang & Wei, Lijun, 2016. "Pareto optimization scheduling with two competing agents to minimize the number of tardy jobs and the maximum cost," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 912-923.
    4. Shi-Sheng Li & Jin-Jiang Yuan, 2020. "Single-machine scheduling with multi-agents to minimize total weighted late work," Journal of Scheduling, Springer, vol. 23(4), pages 497-512, August.
    5. Yin, Yunqiang & Cheng, Shuenn-Ren & Cheng, T.C.E. & Wang, Du-Juan & Wu, Chin-Chia, 2016. "Just-in-time scheduling with two competing agents on unrelated parallel machines," Omega, Elsevier, vol. 63(C), pages 41-47.
    6. Cheng He & Joseph Y.-T. Leung, 2017. "Two-agent scheduling of time-dependent jobs," Journal of Combinatorial Optimization, Springer, vol. 34(2), pages 362-377, August.
    7. A. M. A. Hariri & C. N. Potts & L. N. Van Wassenhove, 1995. "Single Machine Scheduling to Minimize Total Weighted Late Work," INFORMS Journal on Computing, INFORMS, vol. 7(2), pages 232-242, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Rubing & Geng, Zhichao & Lu, Lingfa & Yuan, Jinjiang & Zhang, Yuan, 2022. "Pareto-scheduling of two competing agents with their own equal processing times," European Journal of Operational Research, Elsevier, vol. 301(2), pages 414-431.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruyan He & Jinjiang Yuan & C. T. Ng & T. C. E. Cheng, 2021. "Two-agent preemptive Pareto-scheduling to minimize the number of tardy jobs and total late work," Journal of Combinatorial Optimization, Springer, vol. 41(2), pages 504-525, February.
    2. Chen, Rubing & Geng, Zhichao & Lu, Lingfa & Yuan, Jinjiang & Zhang, Yuan, 2022. "Pareto-scheduling of two competing agents with their own equal processing times," European Journal of Operational Research, Elsevier, vol. 301(2), pages 414-431.
    3. Yuan Zhang & Jinjiang Yuan & Chi To Ng & Tai Chiu E. Cheng, 2021. "Pareto‐optimization of three‐agent scheduling to minimize the total weighted completion time, weighted number of tardy jobs, and total weighted late work," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(3), pages 378-393, April.
    4. Sterna, Małgorzata, 2021. "Late and early work scheduling: A survey," Omega, Elsevier, vol. 104(C).
    5. Dvir Shabtay, 2023. "A new perspective on single-machine scheduling problems with late work related criteria," Annals of Operations Research, Springer, vol. 322(2), pages 947-966, March.
    6. Ruyan He & Jinjiang Yuan, 2020. "Two-Agent Preemptive Pareto-Scheduling to Minimize Late Work and Other Criteria," Mathematics, MDPI, vol. 8(9), pages 1-18, September.
    7. Shi-Sheng Li & Jin-Jiang Yuan, 2020. "Single-machine scheduling with multi-agents to minimize total weighted late work," Journal of Scheduling, Springer, vol. 23(4), pages 497-512, August.
    8. Shi-Sheng Li & Ren-Xia Chen, 2023. "Competitive two-agent scheduling with release dates and preemption on a single machine," Journal of Scheduling, Springer, vol. 26(3), pages 227-249, June.
    9. Shabtay, Dvir & Mosheiov, Gur & Oron, Daniel, 2022. "Single machine scheduling with common assignable due date/due window to minimize total weighted early and late work," European Journal of Operational Research, Elsevier, vol. 303(1), pages 66-77.
    10. Mosheiov, Gur & Oron, Daniel & Shabtay, Dvir, 2021. "Minimizing total late work on a single machine with generalized due-dates," European Journal of Operational Research, Elsevier, vol. 293(3), pages 837-846.
    11. Chen, Xin & Liang, Yage & Sterna, Małgorzata & Wang, Wen & Błażewicz, Jacek, 2020. "Fully polynomial time approximation scheme to maximize early work on parallel machines with common due date," European Journal of Operational Research, Elsevier, vol. 284(1), pages 67-74.
    12. Koulamas, Christos & Kyparisis, George J., 2023. "A classification of dynamic programming formulations for offline deterministic single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 999-1017.
    13. Shi-Sheng Li & Ren-Xia Chen, 2022. "Minimizing total weighted late work on a single-machine with non-availability intervals," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1330-1355, September.
    14. Rubing Chen & Jinjiang Yuan & C.T. Ng & T.C.E. Cheng, 2019. "Single‐machine scheduling with deadlines to minimize the total weighted late work," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 582-595, October.
    15. Malgorzata Sterna & Kateryna Czerniachowska, 2017. "Polynomial Time Approximation Scheme for Two Parallel Machines Scheduling with a Common Due Date to Maximize Early Work," Journal of Optimization Theory and Applications, Springer, vol. 174(3), pages 927-944, September.
    16. Yuan Zhang & Jinjiang Yuan, 2019. "A note on a two-agent scheduling problem related to the total weighted late work," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 989-999, April.
    17. Yunqiang Yin & Jianyou Xu & T. C. E. Cheng & Chin‐Chia Wu & Du‐Juan Wang, 2016. "Approximation schemes for single‐machine scheduling with a fixed maintenance activity to minimize the total amount of late work," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(2), pages 172-183, March.
    18. Chung‐Yee Lee & Zhi‐Long Chen, 2000. "Scheduling jobs and maintenance activities on parallel machines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(2), pages 145-165, March.
    19. Matan Atsmony & Gur Mosheiov, 2023. "Scheduling to maximize the weighted number of on-time jobs on parallel machines with bounded job-rejection," Journal of Scheduling, Springer, vol. 26(2), pages 193-207, April.
    20. Wan, Long & Mei, Jiajie & Du, Jiangze, 2021. "Two-agent scheduling of unit processing time jobs to minimize total weighted completion time and total weighted number of tardy jobs," European Journal of Operational Research, Elsevier, vol. 290(1), pages 26-35.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:11:p:2070-:d:448030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.