IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i12p1201-d295445.html
   My bibliography  Save this article

Finite Integration Method with Shifted Chebyshev Polynomials for Solving Time-Fractional Burgers’ Equations

Author

Listed:
  • Ampol Duangpan

    (Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand)

  • Ratinan Boonklurb

    (Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand)

  • Tawikan Treeyaprasert

    (Department of Mathematics and Statistics, Faculty of Science, Thammasat University, Rangsit Center, Pathum Thani 12120, Thailand)

Abstract

The Burgers’ equation is one of the nonlinear partial differential equations that has been studied by many researchers, especially, in terms of the fractional derivatives. In this article, the numerical algorithms are invented to obtain the approximate solutions of time-fractional Burgers’ equations both in one and two dimensions as well as time-fractional coupled Burgers’ equations which their fractional derivatives are described in the Caputo sense. These proposed algorithms are constructed by applying the finite integration method combined with the shifted Chebyshev polynomials to deal the spatial discretizations and further using the forward difference quotient to handle the temporal discretizations. Moreover, numerical examples demonstrate the ability of the proposed method to produce the decent approximate solutions in terms of accuracy. The rate of convergence and computational cost for each example are also presented.

Suggested Citation

  • Ampol Duangpan & Ratinan Boonklurb & Tawikan Treeyaprasert, 2019. "Finite Integration Method with Shifted Chebyshev Polynomials for Solving Time-Fractional Burgers’ Equations," Mathematics, MDPI, vol. 7(12), pages 1-24, December.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:12:p:1201-:d:295445
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/12/1201/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/12/1201/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yun, D.F. & Wen, Z.H. & Hon, Y.C., 2015. "Adaptive least squares finite integration method for higher-dimensional singular perturbation problems with multiple boundary layers," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 232-250.
    2. Huamin Zhang & Feng Ding, 2013. "On the Kronecker Products and Their Applications," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-8, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Waleed Mohamed Abd-Elhameed, 2022. "Novel Formulae of Certain Generalized Jacobi Polynomials," Mathematics, MDPI, vol. 10(22), pages 1-25, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Srinivas R. Chakravarthy & Alexander N. Dudin & Sergey A. Dudin & Olga S. Dudina, 2023. "Queueing System with Potential for Recruiting Secondary Servers," Mathematics, MDPI, vol. 11(3), pages 1-24, January.
    2. Arnon Ploymukda & Pattrawut Chansangiam, 2016. "Khatri-Rao Products for Operator Matrices Acting on the Direct Sum of Hilbert Spaces," Journal of Mathematics, Hindawi, vol. 2016, pages 1-7, November.
    3. Alexander Dudin & Sergey Dudin & Rosanna Manzo & Luigi Rarità, 2022. "Analysis of Multi-Server Priority Queueing System with Hysteresis Strategy of Server Reservation and Retrials," Mathematics, MDPI, vol. 10(20), pages 1-19, October.
    4. Bakhtiari, Mehrdad & Lakis, Aouni A. & Kerboua, Youcef, 2019. "Derivatives of fourth order Kronecker power systems with applications in nonlinear elasticity," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    5. Wei, H. & Pan, Q.X. & Adetoro, O.B. & Avital, E. & Yuan, Y. & Wen, P.H., 2020. "Dynamic large deformation analysis of a cantilever beam," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 174(C), pages 183-204.
    6. Soradi-Zeid, Samaneh & Mesrizadeh, Mehdi, 2023. "On the convergence of finite integration method for system of ordinary differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    7. Singh, Anup & Das, Subir & Ong, S.H., 2022. "Study and analysis of nonlinear (2+1)-dimensional solute transport equation in porous media," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 491-500.
    8. Silva, Joeliton B. & de Albuquerque, Douglas F., 2022. "Tricritical behavior of the spin-3/2 anisotropic Heisenberg model with Dzyaloshinskii–Moriya interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    9. Daniel A. Griffith, 2022. "Selected Payback Statistical Contributions to Matrix/Linear Algebra: Some Counterflowing Conceptualizations," Stats, MDPI, vol. 5(4), pages 1-16, November.
    10. Antonio Dalessandro & Gareth W. Peters, 2018. "Tensor Approximation of Generalized Correlated Diffusions and Functional Copula Operators," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 237-271, March.
    11. Malik Zaka Ullah & Abdullah Khamis Alzahrani & Hashim Mohammed Alshehri & Stanford Shateyi, 2023. "Investigation of Higher Order Localized Approximations for a Fractional Pricing Model in Finance," Mathematics, MDPI, vol. 11(12), pages 1-12, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:12:p:1201-:d:295445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.