IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i9p1529-d1650216.html
   My bibliography  Save this article

Multi-Domain Controversial Text Detection Based on a Machine Learning and Deep Learning Stacked Ensemble

Author

Listed:
  • Jiadi Liu

    (School of Architecture and Design, Beijing Jiaotong University, Beijing 100044, China)

  • Zhuodong Liu

    (School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China)

  • Qiaoqi Li

    (School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China)

  • Weihao Kong

    (School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China)

  • Xiangyu Li

    (Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

Abstract

Due to the rapid proliferation of social media and online reviews, the accurate identification and classification of controversial texts has emerged as a significant challenge in the field of natural language processing. However, traditional text-classification methodologies frequently encounter critical limitations, such as feature sensitivity and inadequate generalization capabilities. This results in a notably suboptimal performance when confronted with diverse controversial content. To address these substantial limitations, this paper proposes a novel controversial text-detection framework based on stacked ensemble learning to enhance the accuracy and robustness of text classification. Firstly, considering the multidimensional complexity of textual features, we integrate comprehensive feature engineering, i.e., encompassing word frequency, statistical metrics, sentiment analysis, and comment tree structure features, as well as advanced feature selection methodologies, particularly lassonet, i.e., a neural network with feature sparsity, to effectively address dimensionality challenges while enhancing model interpretability and computational efficiency. Secondly, we design a two-tier stacked ensemble architecture, which not only combines the strengths of multiple machine learning algorithms, e.g., gradient-boosted decision tree (GBDT), random forest (RF), and extreme gradient boosting (XGBoost), with deep learning models, e.g., gated recurrent unit (GRU) and long short-term memory (LSTM), but also implements the support vector machine (SVM) for efficient meta-learning. Furthermore, we systematically compare three hyperparameter optimization algorithms, including the sparrow search algorithm (SSA), particle swarm optimization (PSO), and Bayesian optimization (BO). The experimental results demonstrate that the SSA exhibits a superior performance in exploring high-dimensional parameter spaces. Extensive experimentation across diverse topics and domains also confirms that our proposed methodology significantly outperforms the state-of-the-art approaches.

Suggested Citation

  • Jiadi Liu & Zhuodong Liu & Qiaoqi Li & Weihao Kong & Xiangyu Li, 2025. "Multi-Domain Controversial Text Detection Based on a Machine Learning and Deep Learning Stacked Ensemble," Mathematics, MDPI, vol. 13(9), pages 1-25, May.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:9:p:1529-:d:1650216
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/9/1529/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/9/1529/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Iftikhar Ahmad & Muhammad Yousaf & Suhail Yousaf & Muhammad Ovais Ahmad, 2020. "Fake News Detection Using Machine Learning Ensemble Methods," Complexity, Hindawi, vol. 2020, pages 1-11, October.
    2. Gérard Biau & Erwan Scornet, 2016. "A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 197-227, June.
    3. Shaymaa E. Sorour & Abdulrahman Alojail & Amr El-Shora & Ahmed E. Amin & Amr A. Abohany, 2024. "A Hybrid Deep Learning Approach for Enhanced Sentiment Classification and Consistency Analysis in Customer Reviews," Mathematics, MDPI, vol. 12(23), pages 1-38, December.
    4. Peijie Ye & Hao Zhang & Xi Zhou, 2024. "CNN-CBAM-LSTM: Enhancing Stock Return Prediction Through Long and Short Information Mining in Stock Prediction," Mathematics, MDPI, vol. 12(23), pages 1-19, November.
    5. Gérard Biau & Erwan Scornet, 2016. "Rejoinder on: A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 264-268, June.
    6. Jining Wang & Lin Jiang & Lei Wang, 2024. "Prediction of China’s Polysilicon Prices: A Combination Model Based on Variational Mode Decomposition, Sparrow Search Algorithm and Long Short-Term Memory," Mathematics, MDPI, vol. 12(23), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Lei & Elsworth, Derek & Zhang, Fengshou & Wang, Zhiyuan & Zhang, Jianbo, 2023. "Evaluation of proppant injection based on a data-driven approach integrating numerical and ensemble learning models," Energy, Elsevier, vol. 264(C).
    2. Ma, Zhikai & Huo, Qian & Wang, Wei & Zhang, Tao, 2023. "Voltage-temperature aware thermal runaway alarming framework for electric vehicles via deep learning with attention mechanism in time-frequency domain," Energy, Elsevier, vol. 278(C).
    3. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
    4. Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    5. Sachin Kumar & Zairu Nisha & Jagvinder Singh & Anuj Kumar Sharma, 2022. "Sensor network driven novel hybrid model based on feature selection and SVR to predict indoor temperature for energy consumption optimisation in smart buildings," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 3048-3061, December.
    6. Escribano, Álvaro & Wang, Dandan, 2021. "Mixed random forest, cointegration, and forecasting gasoline prices," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1442-1462.
    7. Yigit Aydede & Jan Ditzen, 2022. "Identifying the regional drivers of influenza-like illness in Nova Scotia with dominance analysis," Papers 2212.06684, arXiv.org.
    8. Siyoon Kwon & Hyoseob Noh & Il Won Seo & Sung Hyun Jung & Donghae Baek, 2021. "Identification Framework of Contaminant Spill in Rivers Using Machine Learning with Breakthrough Curve Analysis," IJERPH, MDPI, vol. 18(3), pages 1-26, January.
    9. Karim Zkik & Anass Sebbar & Oumaima Fadi & Sachin Kamble & Amine Belhadi, 2024. "Securing blockchain-based crowdfunding platforms: an integrated graph neural networks and machine learning approach," Electronic Commerce Research, Springer, vol. 24(1), pages 497-533, March.
    10. Yan, Ran & Wang, Shuaian & Du, Yuquan, 2020. "Development of a two-stage ship fuel consumption prediction and reduction model for a dry bulk ship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    11. Yi Cao & Xue Li, 2022. "Multi-Model Attention Fusion Multilayer Perceptron Prediction Method for Subway OD Passenger Flow under COVID-19," Sustainability, MDPI, vol. 14(21), pages 1-16, November.
    12. Filmer,Deon P. & Nahata,Vatsal & Sabarwal,Shwetlena, 2021. "Preparation, Practice, and Beliefs : A Machine Learning Approach to Understanding Teacher Effectiveness," Policy Research Working Paper Series 9847, The World Bank.
    13. Jonas Botz & Diego Valderrama & Jannis Guski & Holger Fröhlich, 2024. "A dynamic ensemble model for short-term forecasting in pandemic situations," PLOS Global Public Health, Public Library of Science, vol. 4(8), pages 1-18, August.
    14. Daniel Boller & Michael Lechner & Gabriel Okasa, 2025. "The effect of sport in online dating: evidence from causal machine learning," Palgrave Communications, Palgrave Macmillan, vol. 12(1), pages 1-13, December.
    15. Zhenchao Zhang & Weixin Luan & Chuang Tian & Min Su, 2025. "Impact of Urban Expansion on School Quality in Compulsory Education: A Spatio-Temporal Study of Dalian, China," Land, MDPI, vol. 14(2), pages 1-20, January.
    16. Jorge Antunes & Peter Wanke & Thiago Fonseca & Yong Tan, 2023. "Do ESG Risk Scores Influence Financial Distress? Evidence from a Dynamic NDEA Approach," Sustainability, MDPI, vol. 15(9), pages 1-32, May.
    17. Lyudmyla Kirichenko & Tamara Radivilova & Vitalii Bulakh, 2018. "Machine Learning in Classification Time Series with Fractal Properties," Data, MDPI, vol. 4(1), pages 1-13, December.
    18. Cini, Federico & Ferrari, Annalisa, 2025. "Towards the estimation of ESG ratings: A machine learning approach using balance sheet ratios," Research in International Business and Finance, Elsevier, vol. 73(PB).
    19. Ivan Brandić & Lato Pezo & Nikola Bilandžija & Anamarija Peter & Jona Šurić & Neven Voća, 2023. "Comparison of Different Machine Learning Models for Modelling the Higher Heating Value of Biomass," Mathematics, MDPI, vol. 11(9), pages 1-14, April.
    20. Jianghong Xu & Wei Lu & Weixin Wang, 2024. "From “fragile smallholders” to “resilient smallholders”: measuring rural household resilience in China," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:9:p:1529-:d:1650216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.