IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i7p1029-d1617620.html
   My bibliography  Save this article

Numerous Multi-Wave Solutions of the Time-Fractional Boussinesq-like System via a Variant of the Extended Simple Equations Method (SEsM)

Author

Listed:
  • Elena V. Nikolova

    (Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 4, 1113 Sofia, Bulgaria)

  • Mila Chilikova-Lubomirova

    (Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 4, 1113 Sofia, Bulgaria)

Abstract

In this study, we propose a generalized framework based on the Simple Equations Method (SEsM) for finding exact solutions to systems of fractional nonlinear partial differential equations (FNPDEs). The key developments over the original SEsM in the proposed analytical framework include the following: (1) an extension of the original SEsM by constructing the solutions of the studied FNPDEs as complex composite functions which combine two single composite functions, comprising the power series of the solutions of two simple equations or two special functions with different independent variables (different wave coordinates); (2) an extension of the scope of fractional wave transformations used to reduce the studied FNPDEs to different types of ODEs, depending on the physical nature of the studied FNPDEs and the type of selected simple equations. One variant of the proposed generalized SEsM is applied to a mathematical generalization inspired by the classical Boussinesq model. The studied time-fractional Boussinesq-like system describes more intricate or multiphase environments, where classical assumptions (such as constant wave speed and energy conservation) are no longer applicable. Based on the applied SEsM variant, we assume that each system variable in the studied model supports multi-wave dynamics, which involves combined propagation of two distinct waves traveling at different wave speeds. As a result, numerous new multi-wave solutions including combinations of different hyperbolic, elliptic, and trigonometric functions are derived. To visualize the wave dynamics and validate the theoretical results, some of the obtained analytical solutions are numerically simulated. The new analytical solutions obtained in this study can contribute to the prediction and control of more specific physical processes, including diffusion in porous media, nanofluid dynamics, ocean current modeling, multiphase fluid dynamics, as well as several geophysical phenomena.

Suggested Citation

  • Elena V. Nikolova & Mila Chilikova-Lubomirova, 2025. "Numerous Multi-Wave Solutions of the Time-Fractional Boussinesq-like System via a Variant of the Extended Simple Equations Method (SEsM)," Mathematics, MDPI, vol. 13(7), pages 1-29, March.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:7:p:1029-:d:1617620
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/7/1029/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/7/1029/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vahid Reza Hosseini & Arezou Rezazadeh & Hui Zheng & Wennan Zou, 2022. "A Nonlocal Modeling For Solving Time Fractional Diffusion Equation Arising In Fluid Mechanics," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 30(05), pages 1-21, August.
    2. Elena V. Nikolova, 2025. "On the Extended Simple Equations Method (SEsM) and Its Application for Finding Exact Solutions of the Time-Fractional Diffusive Predator–Prey System Incorporating an Allee Effect," Mathematics, MDPI, vol. 13(3), pages 1-31, January.
    3. Kudryashov, Nikolai A., 2005. "Simplest equation method to look for exact solutions of nonlinear differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 24(5), pages 1217-1231.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kudryashov, Nikolay A. & Zakharchenko, Anastasia S., 2014. "Painlevé analysis and exact solutions for the Belousov–Zhabotinskii reaction–diffusion system," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 111-117.
    2. Eslami, Mostafa, 2016. "Exact traveling wave solutions to the fractional coupled nonlinear Schrodinger equations," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 141-148.
    3. Kudryashov, N.A., 2015. "On nonlinear differential equation with exact solutions having various pole orders," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 173-177.
    4. Yusuf Pandir & Halime Ulusoy, 2013. "New Generalized Hyperbolic Functions to Find New Exact Solutions of the Nonlinear Partial Differential Equations," Journal of Mathematics, Hindawi, vol. 2013, pages 1-5, January.
    5. Oke Davies Adeyemo & Lijun Zhang & Chaudry Masood Khalique, 2022. "Bifurcation Theory, Lie Group-Invariant Solutions of Subalgebras and Conservation Laws of a Generalized (2+1)-Dimensional BK Equation Type II in Plasma Physics and Fluid Mechanics," Mathematics, MDPI, vol. 10(14), pages 1-46, July.
    6. Innocent Simbanefayi & Chaudry Masood Khalique, 2020. "Group Invariant Solutions and Conserved Quantities of a (3+1)-Dimensional Generalized Kadomtsev–Petviashvili Equation," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
    7. Kudryashov, Nikolay A. & Ivanova, Yulia S., 2016. "Painleve analysis and exact solutions for the modified Korteweg–de Vries equation with polynomial source," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 377-382.
    8. Fahmy, E.S., 2008. "Travelling wave solutions for some time-delayed equations through factorizations," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1209-1216.
    9. Vitanov, Nikolay K. & Dimitrova, Zlatinka I. & Vitanov, Kaloyan N., 2015. "Modified method of simplest equation for obtaining exact analytical solutions of nonlinear partial differential equations: further development of the methodology with applications," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 363-378.
    10. Mustafa Inc & Rubayyi T. Alqahtani & Ravi P. Agarwal, 2023. "W-Shaped Bright Soliton of the (2 + 1)-Dimension Nonlinear Electrical Transmission Line," Mathematics, MDPI, vol. 11(7), pages 1-13, April.
    11. Chaudry Masood Khalique & Karabo Plaatjie, 2021. "Symmetry Methods and Conservation Laws for the Nonlinear Generalized 2D Equal-Width Partial Differential Equation of Engineering," Mathematics, MDPI, vol. 10(1), pages 1-17, December.
    12. Yang, Lijuan & Du, Xianyun & Yang, Qiongfen, 2016. "New variable separation solutions to the (2 + 1)-dimensional Burgers equation," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 1271-1275.
    13. Ramírez, J. & Romero, J.L. & Muriel, C., 2016. "Reductions of PDEs to second order ODEs and symbolic computation," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 122-136.
    14. Kudryashov, N.A. & Lavrova, S.F., 2021. "Dynamical features of the generalized Kuramoto-Sivashinsky equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    15. Zayed, E.M.E. & Alurrfi, K.A.E., 2016. "Extended auxiliary equation method and its applications for finding the exact solutions for a class of nonlinear Schrödinger-type equations," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 111-131.
    16. Kudryashov, Nikolay A., 2019. "Exact solutions of the equation for surface waves in a convecting fluid," Applied Mathematics and Computation, Elsevier, vol. 344, pages 97-106.
    17. Andrei D. Polyanin & Alexander V. Aksenov, 2024. "Unsteady Magnetohydrodynamics PDE of Monge–Ampère Type: Symmetries, Closed-Form Solutions, and Reductions," Mathematics, MDPI, vol. 12(13), pages 1-29, July.
    18. Yıldırım, Yakup & Yaşar, Emrullah, 2018. "A (2+1)-dimensional breaking soliton equation: Solutions and conservation laws," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 146-155.
    19. Andrei D. Polyanin, 2019. "Comparison of the Effectiveness of Different Methods for Constructing Exact Solutions to Nonlinear PDEs. Generalizations and New Solutions," Mathematics, MDPI, vol. 7(5), pages 1-19, April.
    20. Xu, Guoan & Zhang, Yi & Li, Jibin, 2022. "Exact solitary wave and periodic-peakon solutions of the complex Ginzburg–Landau equation: Dynamical system approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 157-167.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:7:p:1029-:d:1617620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.