IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v142y2021ics0960077920308948.html
   My bibliography  Save this article

Dynamical features of the generalized Kuramoto-Sivashinsky equation

Author

Listed:
  • Kudryashov, N.A.
  • Lavrova, S.F.

Abstract

The stabilizing effects of dispersion on the dynamics of the generalized Kuramoto-Sivashinsky equation at various degrees of nonlinearity are considered in this paper. The second and third sections investigate properties of the traveling wave reduction of the Kuramoto-Sivashinsky equation. In the fourth section the changing dynamics of the generalized KuramotoSivashinsky PDE is explored by calculating the largest Lyapunov exponents over a range of values of the dispersion parameter.

Suggested Citation

  • Kudryashov, N.A. & Lavrova, S.F., 2021. "Dynamical features of the generalized Kuramoto-Sivashinsky equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
  • Handle: RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920308948
    DOI: 10.1016/j.chaos.2020.110502
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920308948
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110502?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hereman, Willy & Nuseir, Ameina, 1997. "Symbolic methods to construct exact solutions of nonlinear partial differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 43(1), pages 13-27.
    2. Kudryashov, Nikolai A., 2005. "Simplest equation method to look for exact solutions of nonlinear differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 24(5), pages 1217-1231.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Hang & Xia, Yonghui, 2024. "Persistence of solitary wave solutions for the delayed regularized long wave equation under Kuramoto–Sivashinsky perturbation and Marangoni effect," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zarea, Sana’a A., 2009. "The tanh method: A tool for solving some mathematical models," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 979-988.
    2. Andrei D. Polyanin, 2019. "Comparison of the Effectiveness of Different Methods for Constructing Exact Solutions to Nonlinear PDEs. Generalizations and New Solutions," Mathematics, MDPI, vol. 7(5), pages 1-19, April.
    3. Xu, Guoan & Zhang, Yi & Li, Jibin, 2022. "Exact solitary wave and periodic-peakon solutions of the complex Ginzburg–Landau equation: Dynamical system approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 157-167.
    4. A. Kudryashov, Nikolay, 2016. "On solutions of generalized modified Korteweg–de Vries equation of the fifth order with dissipation," Applied Mathematics and Computation, Elsevier, vol. 280(C), pages 39-45.
    5. Noha M. Rasheed & Mohammed O. Al-Amr & Emad A. Az-Zo’bi & Mohammad A. Tashtoush & Lanre Akinyemi, 2021. "Stable Optical Solitons for the Higher-Order Non-Kerr NLSE via the Modified Simple Equation Method," Mathematics, MDPI, vol. 9(16), pages 1-12, August.
    6. Navickas, Z. & Telksnys, T. & Marcinkevicius, R. & Ragulskis, M., 2017. "Operator-based approach for the construction of analytical soliton solutions to nonlinear fractional-order differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 625-634.
    7. Kudryashov, Nikolay A. & Ryabov, Pavel N., 2014. "Exact solutions of one pattern formation model," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 1090-1093.
    8. Zdravković, S. & Zeković, S. & Bugay, A.N. & Petrović, J., 2021. "Two component model of microtubules and continuum approximation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    9. Kudryashov, Nikolay A. & Zakharchenko, Anastasia S., 2014. "Painlevé analysis and exact solutions for the Belousov–Zhabotinskii reaction–diffusion system," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 111-117.
    10. Navickas, Z. & Ragulskis, M. & Telksnys, T., 2016. "Existence of solitary solutions in a class of nonlinear differential equations with polynomial nonlinearity," Applied Mathematics and Computation, Elsevier, vol. 283(C), pages 333-338.
    11. Eslami, Mostafa, 2016. "Exact traveling wave solutions to the fractional coupled nonlinear Schrodinger equations," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 141-148.
    12. Chaudry Masood Khalique & Karabo Plaatjie, 2021. "Exact Solutions and Conserved Vectors of the Two-Dimensional Generalized Shallow Water Wave Equation," Mathematics, MDPI, vol. 9(12), pages 1-17, June.
    13. Sağlam Özkan, Yeşim & Yaşar, Emrullah, 2021. "Breather-type and multi-wave solutions for (2+1)-dimensional nonlocal Gardner equation," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    14. Al-Mdallal, Qasem M. & Syam, Muhammad I., 2007. "Sine–Cosine method for finding the soliton solutions of the generalized fifth-order nonlinear equation," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1610-1617.
    15. Kudryashov, Nikolay A. & Zakharchenko, Anastasia S., 2015. "Analytical properties and exact solutions of the Lotka–Volterra competition system," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 219-228.
    16. Kudryashov, N.A., 2015. "On nonlinear differential equation with exact solutions having various pole orders," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 173-177.
    17. Elena V. Nikolova & Mila Chilikova-Lubomirova, 2025. "Numerous Multi-Wave Solutions of the Time-Fractional Boussinesq-like System via a Variant of the Extended Simple Equations Method (SEsM)," Mathematics, MDPI, vol. 13(7), pages 1-29, March.
    18. Yusuf Pandir & Halime Ulusoy, 2013. "New Generalized Hyperbolic Functions to Find New Exact Solutions of the Nonlinear Partial Differential Equations," Journal of Mathematics, Hindawi, vol. 2013, pages 1-5, January.
    19. Oke Davies Adeyemo & Lijun Zhang & Chaudry Masood Khalique, 2022. "Bifurcation Theory, Lie Group-Invariant Solutions of Subalgebras and Conservation Laws of a Generalized (2+1)-Dimensional BK Equation Type II in Plasma Physics and Fluid Mechanics," Mathematics, MDPI, vol. 10(14), pages 1-46, July.
    20. Kudryashov, Nikolay A., 2020. "Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations," Applied Mathematics and Computation, Elsevier, vol. 371(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920308948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.