IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v164y2022ics0960077922008724.html
   My bibliography  Save this article

Two component model of microtubules – subsonic and supersonic solitary waves

Author

Listed:
  • Ranković, Dragana
  • Zdravković, Slobodan

Abstract

This work represents a contribution to modelling nonlinear dynamics of microtubules, the basic components of the eukaryotic cytoskeleton. Their dynamics can be explained in terms of kink and antikink solitary waves. Special attention was paid to the stability of solitonic solutions of differential equations describing the dynamics of microtubules. It is shown that subsonic solitons are stable, while supersonic ones are not.

Suggested Citation

  • Ranković, Dragana & Zdravković, Slobodan, 2022. "Two component model of microtubules – subsonic and supersonic solitary waves," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
  • Handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922008724
    DOI: 10.1016/j.chaos.2022.112693
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922008724
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112693?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zdravković, S. & Zeković, S. & Bugay, A.N. & Petrović, J., 2021. "Two component model of microtubules and continuum approximation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Zdravković, Slobodan & Kavitha, Louis & Satarić, Miljko V. & Zeković, Slobodan & Petrović, Jovana, 2012. "Modified extended tanh-function method and nonlinear dynamics of microtubules," Chaos, Solitons & Fractals, Elsevier, vol. 45(11), pages 1378-1386.
    3. Kudryashov, Nikolai A., 2005. "Simplest equation method to look for exact solutions of nonlinear differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 24(5), pages 1217-1231.
    4. El-Wakil, S.A. & Abdou, M.A., 2007. "New exact travelling wave solutions using modified extended tanh-function method," Chaos, Solitons & Fractals, Elsevier, vol. 31(4), pages 840-852.
    5. Tabi, Conrad Bertrand & Tankou, Eric & Mohamadou, Alidou, 2017. "Nonlinear coupled mode excitations in microtubules," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 187-194.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zdravković, S. & Zeković, S. & Bugay, A.N. & Petrović, J., 2021. "Two component model of microtubules and continuum approximation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Ranković, Dragana & Sivčević, Vladimir & Batova, Anna & Zdravković, Slobodan, 2023. "Three kinds of W-potentials in nonlinear biophysics of microtubules," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    3. Akbulut, Arzu & Taşcan, Filiz, 2017. "Application of conservation theorem and modified extended tanh-function method to (1+1)-dimensional nonlinear coupled Klein–Gordon–Zakharov equation," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 33-40.
    4. Kudryashov, Nikolay A. & Zakharchenko, Anastasia S., 2014. "Painlevé analysis and exact solutions for the Belousov–Zhabotinskii reaction–diffusion system," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 111-117.
    5. Eslami, Mostafa, 2016. "Exact traveling wave solutions to the fractional coupled nonlinear Schrodinger equations," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 141-148.
    6. Attia Rani & Muhammad Shakeel & Mohammed Kbiri Alaoui & Ahmed M. Zidan & Nehad Ali Shah & Prem Junsawang, 2022. "Application of the Exp − φ ξ -Expansion Method to Find the Soliton Solutions in Biomembranes and Nerves," Mathematics, MDPI, vol. 10(18), pages 1-12, September.
    7. Kudryashov, N.A., 2015. "On nonlinear differential equation with exact solutions having various pole orders," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 173-177.
    8. Yusuf Pandir & Halime Ulusoy, 2013. "New Generalized Hyperbolic Functions to Find New Exact Solutions of the Nonlinear Partial Differential Equations," Journal of Mathematics, Hindawi, vol. 2013, pages 1-5, January.
    9. Oke Davies Adeyemo & Lijun Zhang & Chaudry Masood Khalique, 2022. "Bifurcation Theory, Lie Group-Invariant Solutions of Subalgebras and Conservation Laws of a Generalized (2+1)-Dimensional BK Equation Type II in Plasma Physics and Fluid Mechanics," Mathematics, MDPI, vol. 10(14), pages 1-46, July.
    10. Innocent Simbanefayi & Chaudry Masood Khalique, 2020. "Group Invariant Solutions and Conserved Quantities of a (3+1)-Dimensional Generalized Kadomtsev–Petviashvili Equation," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
    11. Borhanifar, A. & Kabir, M.M. & Maryam Vahdat, L., 2009. "New periodic and soliton wave solutions for the generalized Zakharov system and (2+1)-dimensional Nizhnik–Novikov–Veselov system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1646-1654.
    12. Kudryashov, Nikolay A. & Ivanova, Yulia S., 2016. "Painleve analysis and exact solutions for the modified Korteweg–de Vries equation with polynomial source," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 377-382.
    13. Fahmy, E.S., 2008. "Travelling wave solutions for some time-delayed equations through factorizations," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1209-1216.
    14. Vitanov, Nikolay K. & Dimitrova, Zlatinka I. & Vitanov, Kaloyan N., 2015. "Modified method of simplest equation for obtaining exact analytical solutions of nonlinear partial differential equations: further development of the methodology with applications," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 363-378.
    15. Yusufoğlu, E. & Bekir, A., 2008. "The tanh and the sine–cosine methods for exact solutions of the MBBM and the Vakhnenko equations," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1126-1133.
    16. Mustafa Inc & Rubayyi T. Alqahtani & Ravi P. Agarwal, 2023. "W-Shaped Bright Soliton of the (2 + 1)-Dimension Nonlinear Electrical Transmission Line," Mathematics, MDPI, vol. 11(7), pages 1-13, April.
    17. Bekir, Ahmet & Cevikel, Adem C., 2009. "New exact travelling wave solutions of nonlinear physical models," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1733-1739.
    18. Yusufoğlu, Elcin & Bekir, Ahmet, 2008. "Exact solutions of coupled nonlinear evolution equations," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 842-848.
    19. Chaudry Masood Khalique & Karabo Plaatjie, 2021. "Symmetry Methods and Conservation Laws for the Nonlinear Generalized 2D Equal-Width Partial Differential Equation of Engineering," Mathematics, MDPI, vol. 10(1), pages 1-17, December.
    20. Dubey, Shweta & Chakraverty, S., 2022. "Application of modified extended tanh method in solving fractional order coupled wave equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 509-520.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922008724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.