IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i13p2127-d1430218.html
   My bibliography  Save this article

Unsteady Magnetohydrodynamics PDE of Monge–Ampère Type: Symmetries, Closed-Form Solutions, and Reductions

Author

Listed:
  • Andrei D. Polyanin

    (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, 101 Vernadsky Avenue, Bldg 1, 119526 Moscow, Russia)

  • Alexander V. Aksenov

    (Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, 1 Leninskie Gory, Main Building, 119991 Moscow, Russia)

Abstract

The paper studies an unsteady equation with quadratic nonlinearity in second derivatives, that occurs in electron magnetohydrodynamics. In mathematics, such PDEs are referred to as parabolic Monge–Ampère equations. An overview of the Monge–Ampère type equations is given, in which their unusual qualitative features are noted. For the first time, the Lie group analysis of the considered highly nonlinear PDE with three independent variables is carried out. An eleven-parameter transformation is found that preserves the form of the equation. Some one-dimensional reductions allowing to obtain self-similar and other invariant solutions that satisfy ordinary differential equations are described. A large number of new additive, multiplicative, generalized, and functional separable solutions are obtained. Special attention is paid to the construction of exact closed-form solutions, including solutions in elementary functions (in total, more than 30 solutions in elementary functions were obtained). Two-dimensional symmetry and non-symmetry reductions leading to simpler partial differential equations with two independent variables are considered (including stationary Monge–Ampère type equations, linear and nonlinear heat type equations, and nonlinear filtration equations). The obtained results and exact solutions can be used to evaluate the accuracy and analyze the adequacy of numerical methods for solving initial boundary value problems described by highly nonlinear partial differential equations.

Suggested Citation

  • Andrei D. Polyanin & Alexander V. Aksenov, 2024. "Unsteady Magnetohydrodynamics PDE of Monge–Ampère Type: Symmetries, Closed-Form Solutions, and Reductions," Mathematics, MDPI, vol. 12(13), pages 1-29, July.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:13:p:2127-:d:1430218
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/13/2127/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/13/2127/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kudryashov, Nikolai A., 2005. "Simplest equation method to look for exact solutions of nonlinear differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 24(5), pages 1217-1231.
    2. Andrei D. Polyanin & Vsevolod G. Sorokin, 2023. "Exact Solutions of Reaction–Diffusion PDEs with Anisotropic Time Delay," Mathematics, MDPI, vol. 11(14), pages 1-19, July.
    3. Andrei D. Polyanin & Vsevolod G. Sorokin, 2021. "Nonlinear Pantograph-Type Diffusion PDEs: Exact Solutions and the Principle of Analogy," Mathematics, MDPI, vol. 9(5), pages 1-22, March.
    4. Juan Wang & Jinlin Yang & Xinzhi Liu, 2013. "The Initial and Neumann Boundary Value Problem for a Class Parabolic Monge-Ampère Equation," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-8, July.
    5. Polyanin, Andrei D., 2019. "Functional separable solutions of nonlinear reaction–diffusion equations with variable coefficients," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 282-292.
    6. Pavel Bedrikovetsky & Sara Borazjani, 2022. "Exact Solutions for Gravity-Segregated Flows in Porous Media," Mathematics, MDPI, vol. 10(14), pages 1-32, July.
    7. Vsevolod G. Sorokin & Andrei V. Vyazmin, 2022. "Nonlinear Reaction–Diffusion Equations with Delay: Partial Survey, Exact Solutions, Test Problems, and Numerical Integration," Mathematics, MDPI, vol. 10(11), pages 1-39, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrei D. Polyanin & Vsevolod G. Sorokin, 2023. "Reductions and Exact Solutions of Nonlinear Wave-Type PDEs with Proportional and More Complex Delays," Mathematics, MDPI, vol. 11(3), pages 1-25, January.
    2. Andrei D. Polyanin, 2019. "Comparison of the Effectiveness of Different Methods for Constructing Exact Solutions to Nonlinear PDEs. Generalizations and New Solutions," Mathematics, MDPI, vol. 7(5), pages 1-19, April.
    3. Vsevolod G. Sorokin & Andrei V. Vyazmin, 2022. "Nonlinear Reaction–Diffusion Equations with Delay: Partial Survey, Exact Solutions, Test Problems, and Numerical Integration," Mathematics, MDPI, vol. 10(11), pages 1-39, May.
    4. Alexander V. Aksenov & Andrei D. Polyanin, 2025. "Symmetries, Reductions and Exact Solutions of Nonstationary Monge–Ampère Type Equations," Mathematics, MDPI, vol. 13(3), pages 1-24, February.
    5. Andrei D. Polyanin & Alexei I. Zhurov, 2022. "Multi-Parameter Reaction–Diffusion Systems with Quadratic Nonlinearity and Delays: New Exact Solutions in Elementary Functions," Mathematics, MDPI, vol. 10(9), pages 1-28, May.
    6. Yüzbaşı, Şuayip & Yıldırım, Gamze, 2022. "A collocation method to solve the parabolic-type partial integro-differential equations via Pell–Lucas polynomials," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    7. Jian Zhao & Zhenyue Chen & Jingqi Tu & Yunmei Zhao & Yiqun Dong, 2022. "Application of LSTM Approach for Predicting the Fission Swelling Behavior within a CERCER Composite Fuel," Energies, MDPI, vol. 15(23), pages 1-14, November.
    8. Innocent Simbanefayi & Chaudry Masood Khalique, 2020. "Group Invariant Solutions and Conserved Quantities of a (3+1)-Dimensional Generalized Kadomtsev–Petviashvili Equation," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
    9. Fahmy, E.S., 2008. "Travelling wave solutions for some time-delayed equations through factorizations," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1209-1216.
    10. Mustafa Inc & Rubayyi T. Alqahtani & Ravi P. Agarwal, 2023. "W-Shaped Bright Soliton of the (2 + 1)-Dimension Nonlinear Electrical Transmission Line," Mathematics, MDPI, vol. 11(7), pages 1-13, April.
    11. Chaudry Masood Khalique & Karabo Plaatjie, 2021. "Symmetry Methods and Conservation Laws for the Nonlinear Generalized 2D Equal-Width Partial Differential Equation of Engineering," Mathematics, MDPI, vol. 10(1), pages 1-17, December.
    12. Yang, Lijuan & Du, Xianyun & Yang, Qiongfen, 2016. "New variable separation solutions to the (2 + 1)-dimensional Burgers equation," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 1271-1275.
    13. Zayed, E.M.E. & Alurrfi, K.A.E., 2016. "Extended auxiliary equation method and its applications for finding the exact solutions for a class of nonlinear Schrödinger-type equations," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 111-131.
    14. Kudryashov, Nikolay A. & Ryabov, Pavel N., 2014. "Exact solutions of one pattern formation model," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 1090-1093.
    15. Zdravković, S. & Zeković, S. & Bugay, A.N. & Petrović, J., 2021. "Two component model of microtubules and continuum approximation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    16. Navickas, Z. & Ragulskis, M. & Telksnys, T., 2016. "Existence of solitary solutions in a class of nonlinear differential equations with polynomial nonlinearity," Applied Mathematics and Computation, Elsevier, vol. 283(C), pages 333-338.
    17. Nikolay A. Kudryashov & Sofia F. Lavrova, 2024. "Painlevé Analysis of the Traveling Wave Reduction of the Third-Order Derivative Nonlinear Schrödinger Equation," Mathematics, MDPI, vol. 12(11), pages 1-13, May.
    18. Nickel, J., 2007. "Travelling wave solutions to the Kuramoto–Sivashinsky equation," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1376-1382.
    19. Petar Popivanov & Angela Slavova, 2024. "Some Non-Linear Evolution Equations and Their Explicit Smooth Solutions with Exponential Growth Written into Integral Form," Mathematics, MDPI, vol. 12(7), pages 1-24, March.
    20. Ranković, Dragana & Zdravković, Slobodan, 2022. "Two component model of microtubules – subsonic and supersonic solitary waves," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:13:p:2127-:d:1430218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.