IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i5p852-d1605315.html
   My bibliography  Save this article

Power Functions and Their Relationship with the Unified Fractional Derivative

Author

Listed:
  • Manuel Duarte Ortigueira

    (CTS-UNINOVA and LASI, NOVA School of Science and Technology, NOVA University of Lisbon, Quinta da Torre, 2829-516 Caparica, Portugal)

Abstract

The different forms of power functions will be studied in connection with the unified fractional derivative, and their Fourier transform will be computed. In particular, one-sided, even, and odd powers will be studied.

Suggested Citation

  • Manuel Duarte Ortigueira, 2025. "Power Functions and Their Relationship with the Unified Fractional Derivative," Mathematics, MDPI, vol. 13(5), pages 1-21, March.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:5:p:852-:d:1605315
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/5/852/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/5/852/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Duarte Valério & Manuel D. Ortigueira, 2023. "Variable-Order Fractional Scale Calculus," Mathematics, MDPI, vol. 11(21), pages 1-13, November.
    2. Vasily E. Tarasov, 2023. "Multi-Kernel General Fractional Calculus of Arbitrary Order," Mathematics, MDPI, vol. 11(7), pages 1-32, April.
    3. Juan Luis González-Santander & Francesco Mainardi, 2024. "Some Fractional Integral and Derivative Formulas Revisited," Mathematics, MDPI, vol. 12(17), pages 1-13, September.
    4. Manuel Duarte Ortigueira, 2006. "Riesz potential operators and inverses via fractional centred derivatives," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2006, pages 1-12, August.
    5. J. A. Tenreiro Machado & Alexandra M. S. F. Galhano & Juan J. Trujillo, 2014. "On development of fractional calculus during the last fifty years," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 577-582, January.
    6. Manuel Duarte Ortigueira & José Tenreiro Machado, 2019. "Fractional Derivatives: The Perspective of System Theory," Mathematics, MDPI, vol. 7(2), pages 1-14, February.
    7. Mohammed Al-Refai & Yuri Luchko, 2023. "The General Fractional Integrals and Derivatives on a Finite Interval," Mathematics, MDPI, vol. 11(4), pages 1-13, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zaheer Masood & Muhammad Asif Zahoor Raja & Naveed Ishtiaq Chaudhary & Khalid Mehmood Cheema & Ahmad H. Milyani, 2021. "Fractional Dynamics of Stuxnet Virus Propagation in Industrial Control Systems," Mathematics, MDPI, vol. 9(17), pages 1-27, September.
    2. Vasily E. Tarasov, 2023. "General Fractional Noether Theorem and Non-Holonomic Action Principle," Mathematics, MDPI, vol. 11(20), pages 1-35, October.
    3. Jorge E. Macías-Díaz & Nuria Reguera & Adán J. Serna-Reyes, 2021. "An Efficient Discrete Model to Approximate the Solutions of a Nonlinear Double-Fractional Two-Component Gross–Pitaevskii-Type System," Mathematics, MDPI, vol. 9(21), pages 1-14, October.
    4. Zhang, Xue & Gu, Xian-Ming & Zhao, Yong-Liang & Li, Hu & Gu, Chuan-Yun, 2024. "Two fast and unconditionally stable finite difference methods for Riesz fractional diffusion equations with variable coefficients," Applied Mathematics and Computation, Elsevier, vol. 462(C).
    5. Gauhar Rahman & Kottakkaran Sooppy Nisar & Thabet Abdeljawad, 2020. "Tempered Fractional Integral Inequalities for Convex Functions," Mathematics, MDPI, vol. 8(4), pages 1-12, April.
    6. Vasily E. Tarasov, 2021. "Integral Equations of Non-Integer Orders and Discrete Maps with Memory," Mathematics, MDPI, vol. 9(11), pages 1-12, May.
    7. Adán J. Serna-Reyes & Jorge E. Macías-Díaz, 2021. "A Mass- and Energy-Conserving Numerical Model for a Fractional Gross–Pitaevskii System in Multiple Dimensions," Mathematics, MDPI, vol. 9(15), pages 1-31, July.
    8. Vasily E. Tarasov, 2023. "General Fractional Calculus in Multi-Dimensional Space: Riesz Form," Mathematics, MDPI, vol. 11(7), pages 1-20, March.
    9. Vasily E. Tarasov, 2019. "Rules for Fractional-Dynamic Generalizations: Difficulties of Constructing Fractional Dynamic Models," Mathematics, MDPI, vol. 7(6), pages 1-50, June.
    10. Adán J. Serna-Reyes & Jorge E. Macías-Díaz & Nuria Reguera, 2021. "A Convergent Three-Step Numerical Method to Solve a Double-Fractional Two-Component Bose–Einstein Condensate," Mathematics, MDPI, vol. 9(12), pages 1-22, June.
    11. Duarte Valério & Manuel D. Ortigueira, 2023. "Variable-Order Fractional Scale Calculus," Mathematics, MDPI, vol. 11(21), pages 1-13, November.
    12. Tarasov, Vasily E., 2020. "Fractional econophysics: Market price dynamics with memory effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    13. Sergei Sitnik, 2023. "Editorial for the Special Issue “Analytical and Computational Methods in Differential Equations, Special Functions, Transmutations and Integral Transforms”," Mathematics, MDPI, vol. 11(15), pages 1-7, August.
    14. Macías-Díaz, J.E., 2018. "A numerically efficient Hamiltonian method for fractional wave equations," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 231-248.
    15. Kottakkaran Sooppy Nisar, 2019. "Fractional Integrations of a Generalized Mittag-Leffler Type Function and Its Application," Mathematics, MDPI, vol. 7(12), pages 1-13, December.
    16. Vellasco-Gomes, Arianne & de Figueiredo Camargo, Rubens & Bruno-Alfonso, Alexys, 2020. "Energy bands and Wannier functions of the fractional Kronig-Penney model," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    17. Vassili N. Kolokoltsov & Elina L. Shishkina, 2024. "Fractional Calculus for Non-Discrete Signed Measures," Mathematics, MDPI, vol. 12(18), pages 1-12, September.
    18. Joel Alba-Pérez & Jorge E. Macías-Díaz, 2019. "Analysis of Structure-Preserving Discrete Models for Predator-Prey Systems with Anomalous Diffusion," Mathematics, MDPI, vol. 7(12), pages 1-31, December.
    19. Vasily E. Tarasov, 2019. "On History of Mathematical Economics: Application of Fractional Calculus," Mathematics, MDPI, vol. 7(6), pages 1-28, June.
    20. Iqbal M. Batiha & Shameseddin Alshorm & Adel Ouannas & Shaher Momani & Osama Y. Ababneh & Meaad Albdareen, 2022. "Modified Three-Point Fractional Formulas with Richardson Extrapolation," Mathematics, MDPI, vol. 10(19), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:5:p:852-:d:1605315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.