IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v338y2018icp231-248.html
   My bibliography  Save this article

A numerically efficient Hamiltonian method for fractional wave equations

Author

Listed:
  • Macías-Díaz, J.E.

Abstract

In this work, we consider a partial differential equation that extends the well known wave equation. The model under consideration is a multidimensional equation which includes the presence of both a damping term and a fractional Laplacian of the Riesz type. Homogeneous Dirichlet boundary conditions on a closed and bounded spatial interval are considered in this work. The mathematical model has a fractional Hamiltonian which is conserved when the damping coefficient is equal to zero, and dissipated otherwise. Motivated by these facts, we propose a finite-difference method to approximate the solutions of the continuous model. The method is an implicit scheme which is based on the use of fractional centered differences to approximate the spatial fractional derivatives of the model. A discretized form of the Hamiltoninan is also proposed in this work, and we prove analytically that the method is capable of preserving/dissipating the discrete energy when the continuous model preserves/dissipates the energy. We establish rigorously the properties of consistency, stability and convergence of the method, and provide some a priori bounds for the numerical solutions. Moreover, we prove the existence and the uniqueness of the numerical solutions as well as the unconditional stability of the method in the linear regime. Some computer simulations that assess the capability of the method to preserve/dissipate the energy are carried out for illustration purposes.

Suggested Citation

  • Macías-Díaz, J.E., 2018. "A numerically efficient Hamiltonian method for fractional wave equations," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 231-248.
  • Handle: RePEc:eee:apmaco:v:338:y:2018:i:c:p:231-248
    DOI: 10.1016/j.amc.2018.06.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318304910
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.06.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qin, Wendi & Ding, Deqiong & Ding, Xiaohua, 2015. "Two boundedness and monotonicity preserving methods for a generalized Fisher-KPP equation," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 552-567.
    2. Gafiychuk, V.V. & Datsko, B.Yo., 2006. "Pattern formation in a fractional reaction–diffusion system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 365(2), pages 300-306.
    3. Qianqian Yang & Fawang Liu & Ian Turner, 2010. "Stability and Convergence of an Effective Numerical Method for the Time-Space Fractional Fokker-Planck Equation with a Nonlinear Source Term," International Journal of Differential Equations, Hindawi, vol. 2010, pages 1-22, January.
    4. Macías-Díaz, J.E. & Hendy, A.S. & De Staelen, R.H., 2018. "A compact fourth-order in space energy-preserving method for Riesz space-fractional nonlinear wave equations," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 1-14.
    5. Manuel Duarte Ortigueira, 2006. "Riesz potential operators and inverses via fractional centred derivatives," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2006, pages 1-12, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorge E. Macías-Díaz & Nuria Reguera & Adán J. Serna-Reyes, 2021. "An Efficient Discrete Model to Approximate the Solutions of a Nonlinear Double-Fractional Two-Component Gross–Pitaevskii-Type System," Mathematics, MDPI, vol. 9(21), pages 1-14, October.
    2. Zhang, Xue & Gu, Xian-Ming & Zhao, Yong-Liang & Li, Hu & Gu, Chuan-Yun, 2024. "Two fast and unconditionally stable finite difference methods for Riesz fractional diffusion equations with variable coefficients," Applied Mathematics and Computation, Elsevier, vol. 462(C).
    3. Gafiychuk, V. & Datsko, B. & Meleshko, V., 2008. "Analysis of fractional order Bonhoeffer–van der Pol oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 418-424.
    4. Wang, Nan & Shi, Dongyang, 2021. "Two efficient spectral methods for the nonlinear fractional wave equation in unbounded domain," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 696-718.
    5. Sapa, Lucjan, 2018. "Difference methods for parabolic equations with Robin condition," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 794-811.
    6. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    7. Adán J. Serna-Reyes & Jorge E. Macías-Díaz, 2021. "A Mass- and Energy-Conserving Numerical Model for a Fractional Gross–Pitaevskii System in Multiple Dimensions," Mathematics, MDPI, vol. 9(15), pages 1-31, July.
    8. Wu, Longbin & Ma, Qiang & Ding, Xiaohua, 2021. "Energy-preserving scheme for the nonlinear fractional Klein–Gordon Schrödinger equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1110-1129.
    9. Adán J. Serna-Reyes & Jorge E. Macías-Díaz & Nuria Reguera, 2021. "A Convergent Three-Step Numerical Method to Solve a Double-Fractional Two-Component Bose–Einstein Condensate," Mathematics, MDPI, vol. 9(12), pages 1-22, June.
    10. Xing, Zhiyong & Wen, Liping & Wang, Wansheng, 2021. "An explicit fourth-order energy-preserving difference scheme for the Riesz space-fractional Sine–Gordon equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 624-641.
    11. Lenzi, E.K. & Menechini Neto, R. & Tateishi, A.A. & Lenzi, M.K. & Ribeiro, H.V., 2016. "Fractional diffusion equations coupled by reaction terms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 9-16.
    12. A. S. Hendy & R. H. De Staelen, 2020. "Theoretical Analysis (Convergence and Stability) of a Difference Approximation for Multiterm Time Fractional Convection Diffusion-Wave Equations with Delay," Mathematics, MDPI, vol. 8(10), pages 1-20, October.
    13. Gafiychuk, V. & Datsko, B. & Meleshko, V. & Blackmore, D., 2009. "Analysis of the solutions of coupled nonlinear fractional reaction–diffusion equations," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1095-1104.
    14. Joel Alba-Pérez & Jorge E. Macías-Díaz, 2019. "Analysis of Structure-Preserving Discrete Models for Predator-Prey Systems with Anomalous Diffusion," Mathematics, MDPI, vol. 7(12), pages 1-31, December.
    15. Fu, Yayun & Song, Yongzhong & Wang, Yushun, 2019. "Maximum-norm error analysis of a conservative scheme for the damped nonlinear fractional Schrödinger equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 206-223.
    16. Manuel Duarte Ortigueira & José Tenreiro Machado, 2019. "Fractional Derivatives: The Perspective of System Theory," Mathematics, MDPI, vol. 7(2), pages 1-14, February.
    17. Yan, Jingye & Zhang, Hong & Liu, Ziyuan & Song, Songhe, 2020. "Two novel linear-implicit momentum-conserving schemes for the fractional Korteweg-de Vries equation," Applied Mathematics and Computation, Elsevier, vol. 367(C).
    18. Povstenko, Y.Z., 2010. "Evolution of the initial box-signal for time-fractional diffusion–wave equation in a case of different spatial dimensions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4696-4707.
    19. Zhao, Jingjun & Li, Yu & Xu, Yang, 2019. "An explicit fourth-order energy-preserving scheme for Riesz space fractional nonlinear wave equations," Applied Mathematics and Computation, Elsevier, vol. 351(C), pages 124-138.
    20. Hernandez-Martinez, Eliseo & Valdés-Parada, Francisco & Alvarez-Ramirez, Jose & Puebla, Hector & Morales-Zarate, Epifanio, 2016. "A Green’s function approach for the numerical solution of a class of fractional reaction–diffusion equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 121(C), pages 133-145.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:338:y:2018:i:c:p:231-248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.