IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i12p1915-d1674350.html
   My bibliography  Save this article

Standard Error Estimation in Invariance Alignment

Author

Listed:
  • Alexander Robitzsch

    (IPN—Leibniz Institute for Science and Mathematics Education, Olshausenstraße 62, 24118 Kiel, Germany
    Centre for International Student Assessment (ZIB), Olshausenstraße 62, 24118 Kiel, Germany)

Abstract

The invariance alignment (IA) method enables group comparisons in factor models involving either continuous or discrete items. This article evaluates the performance of the commonly used delta method for standard error estimation against alternative bootstrap confidence interval (CI) approaches for IA using the L 0.5 and L 0 loss functions. For IA applied to continuous items, both the delta method and all bootstrap methods yielded acceptable coverage rates. In contrast, for dichotomous items, only bias-corrected bootstrap CIs provided reliable statistical inference in moderate to large sample sizes. In small sample sizes with dichotomous items, none of the individual methods performed consistently well. However, a newly proposed average bootstrap CI approach—based on averaging the lower and upper CI limits from two bootstrap methods—achieved acceptable coverage rates.

Suggested Citation

  • Alexander Robitzsch, 2025. "Standard Error Estimation in Invariance Alignment," Mathematics, MDPI, vol. 13(12), pages 1-14, June.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:12:p:1915-:d:1674350
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/12/1915/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/12/1915/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:12:p:1915-:d:1674350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.