IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i14p2253-d1438791.html
   My bibliography  Save this article

A Working Conditions Warning Method for Sucker Rod Wells Based on Temporal Sequence Prediction

Author

Listed:
  • Kai Zhang

    (School of Petroleum Engineering, China University of Petroleum, Qingdao 266500, China
    School of Civil Engineering, Qingdao University of Technology, Qingdao 266500, China)

  • Chengzhe Yin

    (School of Petroleum Engineering, China University of Petroleum, Qingdao 266500, China)

  • Weiying Yao

    (CNOOC EnerTech-Drilling & Production Co., Tianjin 300452, China)

  • Gaocheng Feng

    (CNOOC EnerTech-Drilling & Production Co., Tianjin 300452, China)

  • Chen Liu

    (CNOOC Research Institute Ltd., Beijing 100028, China)

  • Cheng Cheng

    (School of Petroleum Engineering, China University of Petroleum, Qingdao 266500, China)

  • Liming Zhang

    (School of Petroleum Engineering, China University of Petroleum, Qingdao 266500, China)

Abstract

The warning of the potential faults occurring in the future in a sucker rod well can help technicians adjust production strategies in time. It is of great significance for safety during well production. In this paper, the key characteristic parameters of dynamometer cards were predicted by a temporal neural network to implement the warning of different working conditions which might result in failures. First, a one-dimensional damped-wave equation was used to eliminate the dynamic loads’ effect of surface dynamometer cards by converting them into down-hole dynamometer cards. Based on the down-hole dynamometer cards, the characteristic parameters were extracted, including the load change, the position of the valve opening and closing point, the dynamometer card area, and so on. The mapping relationship between the characteristic parameters and working conditions (classification model) was obtained by the Xgboost algorithm. Meanwhile, the noise in these parameters was reduced by wavelet transformation, and the rationality of the results was verified. Second, the Encoder–Decoder and multi-head attention structures were used to set up the time series prediction model. Then, the characteristic parameters were predicted in a sequence-to-sequence way by using historical characteristic parameters, date, and pumping parameters as input. At last, by inputting the predicted results into the classification model, a working conditions warning method was created. The results showed that noise reduction improved the prediction accuracy significantly. The prediction relative error of most characteristic parameters was less than 15% after noise reduction. In most working conditions, their F1 values were more than 85%. Most Recall values could be restored to over 90% of those calculated by real parameters, indicating few false negative cases. In general, the warning method proposed in this paper can predict faulty working conditions that may occur in the future in a timely manner.

Suggested Citation

  • Kai Zhang & Chengzhe Yin & Weiying Yao & Gaocheng Feng & Chen Liu & Cheng Cheng & Liming Zhang, 2024. "A Working Conditions Warning Method for Sucker Rod Wells Based on Temporal Sequence Prediction," Mathematics, MDPI, vol. 12(14), pages 1-25, July.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:14:p:2253-:d:1438791
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/14/2253/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/14/2253/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Hongqian & Chen, Zheng & Shu, Xing & Shen, Jiangwei & Liu, Yonggang & Zhang, Yuanjian, 2023. "Multi-step ahead voltage prediction and voltage fault diagnosis based on gated recurrent unit neural network and incremental training," Energy, Elsevier, vol. 266(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Song & Sun, Jing, 2024. "Multi-fault diagnosis strategy based on a non-redundant interleaved measurement circuit and improved fuzzy entropy for the battery system," Energy, Elsevier, vol. 292(C).
    2. Zhao, Hongqian & Chen, Zheng & Shu, Xing & Xiao, Renxin & Shen, Jiangwei & Liu, Yu & Liu, Yonggang, 2024. "Online surface temperature prediction and abnormal diagnosis of lithium-ion batteries based on hybrid neural network and fault threshold optimization," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Chang, Chun & Wang, Qiyue & Jiang, Jiuchun & Jiang, Yan & Wu, Tiezhou, 2023. "Voltage fault diagnosis of a power battery based on wavelet time-frequency diagram," Energy, Elsevier, vol. 278(PB).
    4. Dong, Chenchen & Sun, Dashuai, 2024. "Multi-source domain transfer learning with small sample learning for thermal runaway diagnosis of lithium-ion battery," Applied Energy, Elsevier, vol. 365(C).
    5. Li, Da & Zhang, Lei & Zhang, Zhaosheng & Liu, Peng & Deng, Junjun & Wang, Qiushi & Wang, Zhenpo, 2023. "Battery safety issue detection in real-world electric vehicles by integrated modeling and voltage abnormality," Energy, Elsevier, vol. 284(C).
    6. Zhang, Yagang & Pan, Zhiya & Wang, Hui & Wang, Jingchao & Zhao, Zheng & Wang, Fei, 2023. "Achieving wind power and photovoltaic power prediction: An intelligent prediction system based on a deep learning approach," Energy, Elsevier, vol. 283(C).
    7. Shen, Jiangwei & Ma, Wensai & Shu, Xing & Shen, Shiquan & Chen, Zheng & Liu, Yonggang, 2023. "Accurate state of health estimation for lithium-ion batteries under random charging scenarios," Energy, Elsevier, vol. 279(C).
    8. Yao, Lei & Dai, Huilin & Xiao, Yanqiu & Zhao, Changsheng & Fei, Zhigen & Cui, Guangzhen & Zhang, Longhai, 2024. "An intelligent diagnosis method for battery pack connection faults based on multiple correlation analysis and adaptive fusion decision-making," Energy, Elsevier, vol. 306(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:14:p:2253-:d:1438791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.