IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i10p1550-d1395550.html
   My bibliography  Save this article

Model Recalibration for Regional Bias Reduction in Dynamic Microsimulations

Author

Listed:
  • Jan Weymeirsch

    (Economic and Social Statistics, Trier University, Universitätsring 15, 54296 Trier, Germany)

  • Julian Ernst

    (Economic and Social Statistics, Trier University, Universitätsring 15, 54296 Trier, Germany)

  • Ralf Münnich

    (Economic and Social Statistics, Trier University, Universitätsring 15, 54296 Trier, Germany)

Abstract

Dynamic microsimulations are tools to stochastically project (synthetic) microdata into the future. In spatial microsimulations, regional discrepancies are of particular interest and must be considered accordingly. In practice, the probabilities for state changes are unknown and must be estimated, usually from survey data. However, estimating such models on the regional level is often not feasible due to limited sample size and lack of geographic information. Simply applying the model estimated at the national level to all geographies leads to biased state transitions due to regional differences in level and distribution. In this paper, we introduce a model-based alignment method to adapt predicted probabilities obtained from a nationally estimated model to subregions by integrating known marginal distributions to re-introduce regional heterogeneity and create more realistic trajectories, particularly in small areas. We show that the model-adjusted transition probabilities can capture region-specific patterns and lead to improved projections. Our findings are useful to researchers who want to harmonise model outputs with external information, in particular for the field of microsimulation.

Suggested Citation

  • Jan Weymeirsch & Julian Ernst & Ralf Münnich, 2024. "Model Recalibration for Regional Bias Reduction in Dynamic Microsimulations," Mathematics, MDPI, vol. 12(10), pages 1-25, May.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:10:p:1550-:d:1395550
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/10/1550/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/10/1550/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
    2. Jinjing Li & Cathal O'Donoghue, 2014. "Evaluating Binary Alignment Methods in Microsimulation Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 17(1), pages 1-15.
    3. Joop de Beer, 2011. "A new relational method for smoothing and projecting age-specific fertility rates: TOPALS," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 24(18), pages 409-454.
    4. Carolyn M. Rutter & Alan M. Zaslavsky & Eric J. Feuer, 2011. "Dynamic Microsimulation Models for Health Outcomes," Medical Decision Making, , vol. 31(1), pages 10-18, January.
    5. repec:cai:popine:popu_p1998_10n1_0136 is not listed on IDEAS
    6. Michael E. Miller & Carl D. Langefeld & William M. Tierney & Siu L. Hui & Clement J. McDonald, 1993. "Validation of Probabilistic Predictions," Medical Decision Making, , vol. 13(1), pages 49-57, February.
    7. Peter Stephensen, 2016. "Logit Scaling: A General Method for Alignment in Microsimulation models," International Journal of Microsimulation, International Microsimulation Association, vol. 9(3), pages 89-102.
    8. Robert Tanton, 2014. "A Review of Spatial Microsimulation Methods," International Journal of Microsimulation, International Microsimulation Association, vol. 7(1), pages 4-25.
    9. Sigurd Dyrting, 2020. "Smoothing migration intensities with P-TOPALS," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 43(55), pages 1607-1650.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Pablo Burgard & Joscha Krause & Simon Schmaus, 2019. "Estimation of Regional Transition Probabilities for Spatial Dynamic Microsimulations from Survey Data Lacking in Regional Detail," Research Papers in Economics 2019-12, University of Trier, Department of Economics.
    2. Burgard, Jan Pablo & Krause, Joscha & Schmaus, Simon, 2021. "Estimation of regional transition probabilities for spatial dynamic microsimulations from survey data lacking in regional detail," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    3. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    4. Richiardi, Matteo & Bronka, Patryk & van de Ven, Justin, 2023. "Back to the future: Agent-based modelling and dynamic microsimulation," Centre for Microsimulation and Policy Analysis Working Paper Series CEMPA8/23, Centre for Microsimulation and Policy Analysis at the Institute for Social and Economic Research.
    5. Sigurd Dyrting & Abraham Flaxman & Ethan Sharygin, 2022. "Reconstruction of age distributions from differentially private census data," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(6), pages 2311-2329, December.
    6. Burgard Jan Pablo & Dieckmann Hanna & Krause Joscha & Merkle Hariolf & Münnich Ralf & Neufang Kristina M. & Schmaus Simon, 2020. "A generic business process model for conducting microsimulation studies," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 191-211, August.
    7. Johannes Geyer & Salmai Qari & Hermann Buslei & Peter Haan, 2021. "DySiMo Dokumentation: Version 1.0," Data Documentation 101, DIW Berlin, German Institute for Economic Research.
    8. Jan Pablo Burgard & Hanna Dieckmann & Joscha Krause & Hariolf Merkle & Ralf Münnich & Kristina M. Neufang & Simon Schmaus, 2020. "A generic business process model for conducting microsimulation studies," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 191-211, August.
    9. Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
    10. Abhilash Bandam & Eedris Busari & Chloi Syranidou & Jochen Linssen & Detlef Stolten, 2022. "Classification of Building Types in Germany: A Data-Driven Modeling Approach," Data, MDPI, vol. 7(4), pages 1-23, April.
    11. Boonstra Philip S. & Little Roderick J.A. & West Brady T. & Andridge Rebecca R. & Alvarado-Leiton Fernanda, 2021. "A Simulation Study of Diagnostics for Selection Bias," Journal of Official Statistics, Sciendo, vol. 37(3), pages 751-769, September.
    12. Ja Hyeon Ku & Myong Kim & Seok-Soo Byun & Hyeon Jeong & Cheol Kwak & Hyeon Hoe Kim & Sang Eun Lee, 2015. "External Validation of Models for Prediction of Lymph Node Metastasis in Urothelial Carcinoma of the Bladder," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-10, October.
    13. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    14. Liangyuan Hu & Lihua Li, 2022. "Using Tree-Based Machine Learning for Health Studies: Literature Review and Case Series," IJERPH, MDPI, vol. 19(23), pages 1-13, December.
    15. Norah Alyabs & Sy Han Chiou, 2022. "The Missing Indicator Approach for Accelerated Failure Time Model with Covariates Subject to Limits of Detection," Stats, MDPI, vol. 5(2), pages 1-13, May.
    16. Feldkircher, Martin, 2014. "The determinants of vulnerability to the global financial crisis 2008 to 2009: Credit growth and other sources of risk," Journal of International Money and Finance, Elsevier, vol. 43(C), pages 19-49.
    17. Ida Kubiszewski & Kenneth Mulder & Diane Jarvis & Robert Costanza, 2022. "Toward better measurement of sustainable development and wellbeing: A small number of SDG indicators reliably predict life satisfaction," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 139-148, February.
    18. Georges Steffgen & Philipp E. Sischka & Martha Fernandez de Henestrosa, 2020. "The Quality of Work Index and the Quality of Employment Index: A Multidimensional Approach of Job Quality and Its Links to Well-Being at Work," IJERPH, MDPI, vol. 17(21), pages 1-31, October.
    19. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    20. Esef Hakan Toytok & Sungur Gürel, 2019. "Does Project Children’s University Increase Academic Self-Efficacy in 6th Graders? A Weak Experimental Design," Sustainability, MDPI, vol. 11(3), pages 1-12, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:10:p:1550-:d:1395550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.