IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i6p1511-d1102551.html
   My bibliography  Save this article

Numerical Fractional Optimal Control of Respiratory Syncytial Virus Infection in Octave/MATLAB

Author

Listed:
  • Silvério Rosa

    (Department of Mathematics, Instituto de Telecomunicações, University of Beira Interior, 6201-001 Covilhã, Portugal
    These authors contributed equally to this work.)

  • Delfim F. M. Torres

    (Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal
    These authors contributed equally to this work.)

Abstract

In this article, we develop a simple mathematical GNU Octave/MATLAB code that is easy to modify for the simulation of mathematical models governed by fractional-order differential equations, and for the resolution of fractional-order optimal control problems through Pontryagin’s maximum principle (indirect approach to optimal control). For this purpose, a fractional-order model for the respiratory syncytial virus (RSV) infection is considered. The model is an improvement of one first proposed by the authors in 2018. The initial value problem associated with the RSV infection fractional model is numerically solved using Garrapa’s fde12 solver and two simple methods coded here in Octave/MATLAB: the fractional forward Euler’s method and the predict-evaluate-correct-evaluate (PECE) method of Adams–Bashforth–Moulton. A fractional optimal control problem is then formulated having treatment as the control. The fractional Pontryagin maximum principle is used to characterize the fractional optimal control and the extremals of the problem are determined numerically through the implementation of the forward-backward PECE method. The implemented algorithms are available on GitHub and, at the end of the paper, in appendixes, both for the uncontrolled initial value problem as well as for the fractional optimal control problem, using the free GNU Octave computing software and assuring compatibility with MATLAB.

Suggested Citation

  • Silvério Rosa & Delfim F. M. Torres, 2023. "Numerical Fractional Optimal Control of Respiratory Syncytial Virus Infection in Octave/MATLAB," Mathematics, MDPI, vol. 11(6), pages 1-20, March.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1511-:d:1102551
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/6/1511/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/6/1511/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sintunavarat, Wutiphol & Turab, Ali, 2022. "Mathematical analysis of an extended SEIR model of COVID-19 using the ABC-fractional operator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 65-84.
    2. Rosa, Silvério & Torres, Delfim F.M., 2018. "Optimal control of a fractional order epidemic model with application to human respiratory syncytial virus infection," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 142-149.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boukhouima, Adnane & Hattaf, Khalid & Lotfi, El Mehdi & Mahrouf, Marouane & Torres, Delfim F.M. & Yousfi, Noura, 2020. "Lyapunov functions for fractional-order systems in biology: Methods and applications," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Sharbayta, Sileshi Sintayehu & Buonomo, Bruno & d'Onofrio, Alberto & Abdi, Tadesse, 2022. "‘Period doubling’ induced by optimal control in a behavioral SIR epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    3. Silva, Cristiana J. & Torres, Delfim F.M., 2019. "Stability of a fractional HIV/AIDS model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 164(C), pages 180-190.
    4. McSylvester Ejighikeme Omaba & Hamdan Al Sulaimani, 2022. "On Caputo–Katugampola Fractional Stochastic Differential Equation," Mathematics, MDPI, vol. 10(12), pages 1-12, June.
    5. Askar Akaev & Alexander I. Zvyagintsev & Askar Sarygulov & Tessaleno Devezas & Andrea Tick & Yuri Ichkitidze, 2022. "Growth Recovery and COVID-19 Pandemic Model: Comparative Analysis for Selected Emerging Economies," Mathematics, MDPI, vol. 10(19), pages 1-18, October.
    6. Prem Kumar, R. & Santra, P.K. & Mahapatra, G.S., 2023. "Global stability and analysing the sensitivity of parameters of a multiple-susceptible population model of SARS-CoV-2 emphasising vaccination drive," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 741-766.
    7. He, Sha & Tang, Sanyi & Zhang, Qimin & Rong, Libin & Cheke, Robert A., 2023. "Modelling optimal control of air pollution to reduce respiratory diseases," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    8. Baleanu, Dumitru & Hasanabadi, Manijeh & Mahmoudzadeh Vaziri, Asadollah & Jajarmi, Amin, 2023. "A new intervention strategy for an HIV/AIDS transmission by a general fractional modeling and an optimal control approach," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    9. Xu, Changjin & Liu, Zixin & Pang, Yicheng & Akgül, Ali & Baleanu, Dumitru, 2022. "Dynamics of HIV-TB coinfection model using classical and Caputo piecewise operator: A dynamic approach with real data from South-East Asia, European and American regions," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    10. Ali, Hegagi Mohamed & Ameen, Ismail Gad, 2020. "Save the pine forests of wilt disease using a fractional optimal control strategy," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    11. Berhe, Hailay Weldegiorgis, 2020. "Optimal Control Strategies and Cost-effectiveness Analysis Applied to Real Data of Cholera Outbreak in Ethiopia’s Oromia Region," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    12. Jajarmi, Amin & Yusuf, Abdullahi & Baleanu, Dumitru & Inc, Mustafa, 2020. "A new fractional HRSV model and its optimal control: A non-singular operator approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    13. Lee, Chaeyoung & Li, Yibao & Kim, Junseok, 2020. "The susceptible-unidentified infected-confirmed (SUC) epidemic model for estimating unidentified infected population for COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    14. Yaping Wang & Lin Hu & Linfei Nie, 2022. "Dynamics of a Hybrid HIV/AIDS Model with Age-Structured, Self-Protection and Media Coverage," Mathematics, MDPI, vol. 11(1), pages 1-27, December.
    15. Azhar Iqbal Kashif Butt & Saira Batool & Muhammad Imran & Muneerah Al Nuwairan, 2023. "Design and Analysis of a New COVID-19 Model with Comparative Study of Control Strategies," Mathematics, MDPI, vol. 11(9), pages 1-29, April.
    16. Silvério Rosa & Faïçal Ndaïrou, 2024. "Optimal Control Applied to Piecewise-Fractional Ebola Model," Mathematics, MDPI, vol. 12(7), pages 1-14, March.
    17. Siphokazi Princess Gatyeni & Faraimunashe Chirove & Farai Nyabadza, 2022. "Modelling the Potential Impact of Stigma on the Transmission Dynamics of COVID-19 in South Africa," Mathematics, MDPI, vol. 10(18), pages 1-23, September.
    18. Sergey M. Sitnik & Vladimir E. Fedorov & Nikolay V. Filin & Viktor A. Polunin, 2022. "On the Solvability of Equations with a Distributed Fractional Derivative Given by the Stieltjes Integral," Mathematics, MDPI, vol. 10(16), pages 1-20, August.
    19. Yusuf, Abdullahi & Tasiu Mustapha, Umar & Abdulkadir Sulaiman, Tukur & Hincal, Evren & Bayram, Mustafa, 2021. "Modeling the effect of horizontal and vertical transmissions of HIV infection with Caputo fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    20. Farai Nyabadza & Josiah Mushanyu & Rachel Mbogo & Gift Muchatibaya, 2023. "Modelling the Influence of Dynamic Social Processes on COVID-19 Infection Dynamics," Mathematics, MDPI, vol. 11(4), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1511-:d:1102551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.