IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i4p829-d1059695.html
   My bibliography  Save this article

Understanding the Parameter Influence on Lesion Growth for a Mechanobiology Model of Atherosclerosis

Author

Listed:
  • Patricia Hernández-López

    (Applied Mechanics and Bioengineering, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain)

  • Miguel A. Martínez

    (Applied Mechanics and Bioengineering, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain
    CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza, Spain)

  • Estefanía Peña

    (Applied Mechanics and Bioengineering, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain
    CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza, Spain)

  • Myriam Cilla

    (Applied Mechanics and Bioengineering, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain
    CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza, Spain)

Abstract

In this work, we analyse the influence of the parameters of a mathematical model, previously proposed by the authors, for reproducing atheroma plaque in arteries. The model uses Navier–Stokes equations to calculate the blood flow along the lumen in a transient mode. It also uses Darcy’s law, Kedem–Katchalsky equations, and the three-pore model to simulate plasma and substance flows across the endothelium. The behaviours of all substances in the arterial wall are modelled with convection–diffusion–reaction equations, and finally, plaque growth is calculated. We consider a 2D geometry of a carotid artery, but the model can be extrapolated to other geometries or arteries, such as the coronaries or the aorta. A mono-variant sensitivity analysis of the model parameters was performed, with values of ± 25 % and ± 10 % , with respect to the values of the previous model. The results were analysed with respect to the volume in the plaque of foam cells (FC), synthetic smooth muscle cells (SSMC), and collagen fibre. It was observed that the volume in the plaque of the different substances (FC, SSMC, and collagen) has a strong influence on the results, so it could be used to analyse the vulnerability of plaque. The stenosis ratio of the plaque was also analysed, showing a strong influence on the results as well. Parameters that influence all the results considered when ranged ± 10 % are the rate of LDL degradation and the diffusion coefficients of LDL and monocytes in the arterial wall. Furthermore, it was observed that the change in the volume of foam cells in the plaque has a greater influence on the stenosis ratio than the change of synthetic smooth muscle cells or collagen fibre.

Suggested Citation

  • Patricia Hernández-López & Miguel A. Martínez & Estefanía Peña & Myriam Cilla, 2023. "Understanding the Parameter Influence on Lesion Growth for a Mechanobiology Model of Atherosclerosis," Mathematics, MDPI, vol. 11(4), pages 1-25, February.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:829-:d:1059695
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/4/829/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/4/829/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Houman Zahedmanesh & Hans Van Oosterwyck & Caitríona Lally, 2014. "A multi-scale mechanobiological model of in-stent restenosis: deciphering the role of matrix metalloproteinase and extracellular matrix changes," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 17(8), pages 813-828, June.
    2. Peter Libby & Paul M Ridker & Göran K. Hansson, 2011. "Progress and challenges in translating the biology of atherosclerosis," Nature, Nature, vol. 473(7347), pages 317-325, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abderrahim Nemmar & Deepa Subramaniyan & Badreldin H Ali, 2012. "Protective Effect of Curcumin on Pulmonary and Cardiovascular Effects Induced by Repeated Exposure to Diesel Exhaust Particles in Mice," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-9, June.
    2. Stephanie D. Ansley & Jeffrey T. Howard, 2021. "Dietary Intake and Elevated C-Reactive Protein Levels in US Military Veterans," IJERPH, MDPI, vol. 18(2), pages 1-15, January.
    3. Mengying Wang & Siyue Wang & Xiaowen Wang & Junhui Wu & Yao Wu & Zijing Wang & Jiating Wang & Tao Wu & Yonghua Hu, 2020. "Carotid Intima-Media Thickness, Genetic Risk, and Ischemic Stroke: A Family-Based Study in Rural China," IJERPH, MDPI, vol. 18(1), pages 1-11, December.
    4. Todd, Megan A. & Shkolnikov, Vladimir M. & Goldman, Noreen, 2016. "Why are well-educated Muscovites more likely to survive? Understanding the biological pathways," Social Science & Medicine, Elsevier, vol. 157(C), pages 138-147.
    5. Tae Kyeong Kim & Sejin Jeon & Seonjun Park & Seong-Keun Sonn & Seungwoon Seo & Joowon Suh & Jing Jin & Hyae Yon Kweon & Sinai Kim & Shin Hye Moon & Okhee Kweon & Bon-Hyeock Koo & Nayoung Kim & Hae-Ock, 2022. "2′–5′ oligoadenylate synthetase‑like 1 (OASL1) protects against atherosclerosis by maintaining endothelial nitric oxide synthase mRNA stability," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    6. Bidossessi Wilfried Hounkpe & Rafaela de Oliveira Benatti & Benilton de Sá Carvalho & Erich Vinicius De Paula, 2020. "Identification of common and divergent gene expression signatures in patients with venous and arterial thrombosis using data from public repositories," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-19, August.
    7. Timothy R Braun & Latonya F Been & Akhil Singhal & Jacob Worsham & Sarju Ralhan & Gurpreet S Wander & John C Chambers & Jaspal S Kooner & Christopher E Aston & Dharambir K Sanghera, 2012. "A Replication Study of GWAS-Derived Lipid Genes in Asian Indians: The Chromosomal Region 11q23.3 Harbors Loci Contributing to Triglycerides," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-12, May.
    8. Zeinab Emruzi & Ghasem Ahangari & Pegah Babaheidarian & Mahmoud Arshad, 2018. "Effect of Hyperlipidemia on Cell Mediated Immunity; Could it be as Predisposing Factor of Cancer Risk?," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 12(1), pages 8968-8973, December.
    9. Yusuke Adachi & Kazutaka Ueda & Seitaro Nomura & Kaoru Ito & Manami Katoh & Mikako Katagiri & Shintaro Yamada & Masaki Hashimoto & Bowen Zhai & Genri Numata & Akira Otani & Munetoshi Hinata & Yuta Hir, 2022. "Beiging of perivascular adipose tissue regulates its inflammation and vascular remodeling," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:829-:d:1059695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.