IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i2p291-d1026745.html
   My bibliography  Save this article

Adaptive Nonparametric Density Estimation with B-Spline Bases

Author

Listed:
  • Yanchun Zhao

    (School of Mathematics, Hefei University of Technology, Hefei 230009, China)

  • Mengzhu Zhang

    (School of Mathematics, Hefei University of Technology, Hefei 230009, China)

  • Qian Ni

    (School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China)

  • Xuhui Wang

    (Department of Mathematics, Hohai University, Nanjing 211100, China)

Abstract

Learning density estimation is important in probabilistic modeling and reasoning with uncertainty. Since B-spline basis functions are piecewise polynomials with local support, density estimation with B-splines shows its advantages when intensive numerical computations are involved in the subsequent applications. To obtain an optimal local density estimation with B-splines, we need to select the bandwidth (i.e., the distance of two adjacent knots) for uniform B-splines. However, the selection of bandwidth is challenging, and the computation is costly. On the other hand, nonuniform B-splines can improve on the approximation capability of uniform B-splines. Based on this observation, we perform density estimation with nonuniform B-splines. By introducing the error indicator attached to each interval, we propose an adaptive strategy to generate the nonuniform knot vector. The error indicator is an approximation of the information entropy locally, which is closely related to the number of kernels when we construct the nonuniform estimator. The numerical experiments show that, compared with the uniform B-spline, the local density estimation with nonuniform B-splines not only achieves better estimation results but also effectively alleviates the overfitting phenomenon caused by the uniform B-splines. The comparison with the existing estimation procedures, including the state-of-the-art kernel estimators, demonstrates the accuracy of our new method.

Suggested Citation

  • Yanchun Zhao & Mengzhu Zhang & Qian Ni & Xuhui Wang, 2023. "Adaptive Nonparametric Density Estimation with B-Spline Bases," Mathematics, MDPI, vol. 11(2), pages 1-12, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:291-:d:1026745
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/2/291/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/2/291/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1046-1062.
    2. Leitao, Álvaro & Oosterlee, Cornelis W. & Ortiz-Gracia, Luis & Bohte, Sander M., 2018. "On the data-driven COS method," Applied Mathematics and Computation, Elsevier, vol. 317(C), pages 68-84.
    3. Nikolaj Ezhov & Frank Neitzel & Svetozar Petrovic, 2021. "Spline Approximation, Part 2: From Polynomials in the Monomial Basis to B-splines—A Derivation," Mathematics, MDPI, vol. 9(18), pages 1-24, September.
    4. Xiongtao Dai & Hans-Georg Müller & Fang Yao, 2017. "Optimal Bayes classifiers for functional data and density ratios," Biometrika, Biometrika Trust, vol. 104(3), pages 545-560.
    5. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "A data-driven framework for consistent financial valuation and risk measurement," European Journal of Operational Research, Elsevier, vol. 289(1), pages 381-398.
    6. Hall, Peter, 1987. "Cross-validation and the smoothing of orthogonal series density estimators," Journal of Multivariate Analysis, Elsevier, vol. 21(2), pages 189-206, April.
    7. Abhishek Bhattacharya & David B. Dunson, 2010. "Nonparametric Bayesian density estimation on manifolds with applications to planar shapes," Biometrika, Biometrika Trust, vol. 97(4), pages 851-865.
    8. Larbi Ait-Hennani & Zoulikha Kaid & Ali Laksaci & Mustapha Rachdi, 2022. "Nonparametric Estimation of the Expected Shortfall Regression for Quasi-Associated Functional Data," Mathematics, MDPI, vol. 10(23), pages 1-23, November.
    9. Koo, Ja-Yong, 1996. "Bivariate B-splines for tensor logspline density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 21(1), pages 31-42, January.
    10. Boente, Graciela & Rodriguez, Daniela, 2008. "Robust bandwidth selection in semiparametric partly linear regression models: Monte Carlo study and influential analysis," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2808-2828, January.
    11. Kirkby, J. Lars & Leitao, Álvaro & Nguyen, Duy, 2021. "Nonparametric density estimation and bandwidth selection with B-spline bases: A novel Galerkin method," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    12. Cui, Zhenyu & Kirkby, Justin Lars & Nguyen, Duy, 2020. "Nonparametric Density Estimation By B-Spline Duality," Econometric Theory, Cambridge University Press, vol. 36(2), pages 250-291, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kirkby, J. Lars & Leitao, Álvaro & Nguyen, Duy, 2021. "Nonparametric density estimation and bandwidth selection with B-spline bases: A novel Galerkin method," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    2. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "A data-driven framework for consistent financial valuation and risk measurement," European Journal of Operational Research, Elsevier, vol. 289(1), pages 381-398.
    3. Wang, Yayun & Zhang, Zhimin & Yu, Wenguang, 2021. "Pricing equity-linked death benefits by complex Fourier series expansion in a regime-switching jump diffusion model," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    4. Jaehyuk Choi, 2024. "Exact simulation scheme for the Ornstein-Uhlenbeck driven stochastic volatility model with the Karhunen-Lo\`eve expansions," Papers 2402.09243, arXiv.org.
    5. Litimein, Ouahiba & Laksaci, Ali & Mechab, Boubaker & Bouzebda, Salim, 2023. "Local linear estimate of the functional expectile regression," Statistics & Probability Letters, Elsevier, vol. 192(C).
    6. Rabi Bhattacharya & Rachel Oliver, 2019. "Nonparametric Analysis of Non-Euclidean Data on Shapes and Images," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 1-36, February.
    7. Emil Cornea & Hongtu Zhu & Peter Kim & Joseph G. Ibrahim, 2017. "Regression models on Riemannian symmetric spaces," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 463-482, March.
    8. Junike, Gero & Pankrashkin, Konstantin, 2022. "Precise option pricing by the COS method—How to choose the truncation range," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    9. Tobias Behrens & Gero Junike, 2023. "Greeks' pitfalls for the COS method in the Laplace model," Papers 2306.08421, arXiv.org, revised Jul 2023.
    10. Weishampel, Anthony & Staicu, Ana-Maria & Rand, William, 2023. "Classification of social media users with generalized functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    11. Koo, Ja-Yong & Kooperberg, Charles, 2000. "Logspline density estimation for binned data," Statistics & Probability Letters, Elsevier, vol. 46(2), pages 133-147, January.
    12. Göran Kauermann & Christian Schellhase & David Ruppert, 2013. "Flexible Copula Density Estimation with Penalized Hierarchical B-splines," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 685-705, December.
    13. Guansan Du & Frank Elston, 2022. "RETRACTED ARTICLE: Financial risk assessment to improve the accuracy of financial prediction in the internet financial industry using data analytics models," Operations Management Research, Springer, vol. 15(3), pages 925-940, December.
    14. repec:hal:spmain:info:hdl:2441/etefo8s8r89oamhnhiclqr530 is not listed on IDEAS
    15. Mariela Sued & Marina Valdora & Víctor Yohai, 2020. "Robust doubly protected estimators for quantiles with missing data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 819-843, September.
    16. Stéphane Bonhomme & Koen Jochmans & Jean-Marc Robin, 2014. "Estimating Multivariate Latent-Structure Models," SciencePo Working papers Main hal-01097135, HAL.
    17. Efromovich, Sam, 1996. "Adaptive orthogonal series density estimation for small samples," Computational Statistics & Data Analysis, Elsevier, vol. 22(6), pages 599-617, October.
    18. Hadrich, Atizez & Zribi, Mourad & Masmoudi, Afif, 2016. "Bayesian expectation maximization algorithm by using B-splines functions: Application in image segmentation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 120(C), pages 50-63.
    19. Wenguang Yu & Yaodi Yong & Guofeng Guan & Yujuan Huang & Wen Su & Chaoran Cui, 2019. "Valuing Guaranteed Minimum Death Benefits by Cosine Series Expansion," Mathematics, MDPI, vol. 7(9), pages 1-15, September.
    20. Yanqiong Liu & Zhenghui Li & Yanyan Yao & Hao Dong, 2021. "Asymmetry of Risk Evolution in Crude Oil Market: From the Perspective of Dual Attributes of Oil," Energies, MDPI, vol. 14(13), pages 1-22, July.
    21. Valdevino Félix de Lima, Wenia & David Costa do Nascimento, Abraão & José Amorim do Amaral, Getúlio, 2021. "Distance-based tests for planar shape," Journal of Multivariate Analysis, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:291-:d:1026745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.