IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i19p4025-d1245506.html
   My bibliography  Save this article

Optimal Treatment of Prostate Cancer Based on State Constraint

Author

Listed:
  • Wenhui Luo

    (School of Mathematics and Computer Science, Yunnan Minzu University, Kunming 650500, China
    These authors contributed equally to this work.)

  • Xuewen Tan

    (School of Mathematics and Computer Science, Yunnan Minzu University, Kunming 650500, China
    These authors contributed equally to this work.)

  • Xiufen Zou

    (School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China)

  • Qing Tan

    (School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China)

Abstract

As a new tumor therapeutic strategy, adaptive therapy involves utilizing the competition between cancer cells to suppress the growth of drug-resistant cells, maintaining a certain tumor burden. However, it is difficult to determine the appropriate time and drug dose. In this paper, we consider the competition model between drug-sensitive cells and drug-resistant cells, propose the problem of drug concentration, and provide two state constraints: the upper limit of the maximum allowable drug concentration and the tumor burden. Using relevant theories, we propose the best treatment strategy. Through a numerical simulation and quantitative analysis, the effects of drug concentrations and different tumor burdens on treatments are studied, and the effects of cell-to-cell competitive advantage on cell changes are taken into account. The clinical dose titration method is further simulated; the results show that our therapeutic regimen can better suppress the growth of drug-resistant cells, control the tumor burden, limit drug toxicity, and extend the effective treatment time.

Suggested Citation

  • Wenhui Luo & Xuewen Tan & Xiufen Zou & Qing Tan, 2023. "Optimal Treatment of Prostate Cancer Based on State Constraint," Mathematics, MDPI, vol. 11(19), pages 1-17, September.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:19:p:4025-:d:1245506
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/19/4025/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/19/4025/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert A. Gatenby, 2009. "A change of strategy in the war on cancer," Nature, Nature, vol. 459(7246), pages 508-509, May.
    2. C.Y. Kaya & J.L. Noakes, 2003. "Computational Method for Time-Optimal Switching Control," Journal of Optimization Theory and Applications, Springer, vol. 117(1), pages 69-92, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C. Y. Kaya & J. M. Martínez, 2007. "Euler Discretization and Inexact Restoration for Optimal Control," Journal of Optimization Theory and Applications, Springer, vol. 134(2), pages 191-206, August.
    2. Elisha R. Pager & Anil V. Rao, 2022. "Method for solving bang-bang and singular optimal control problems using adaptive Radau collocation," Computational Optimization and Applications, Springer, vol. 81(3), pages 857-887, April.
    3. Gregory J Kimmel & Philip Gerlee & Philipp M Altrock, 2019. "Time scales and wave formation in non-linear spatial public goods games," PLOS Computational Biology, Public Library of Science, vol. 15(9), pages 1-22, September.
    4. Michael McAsey & Libin Mou & Weimin Han, 2012. "Convergence of the forward-backward sweep method in optimal control," Computational Optimization and Applications, Springer, vol. 53(1), pages 207-226, September.
    5. Elsa Hansen & Jason Karslake & Robert J Woods & Andrew F Read & Kevin B Wood, 2020. "Antibiotics can be used to contain drug-resistant bacteria by maintaining sufficiently large sensitive populations," PLOS Biology, Public Library of Science, vol. 18(5), pages 1-20, May.
    6. Benjamin Wölfl & Hedy te Rietmole & Monica Salvioli & Artem Kaznatcheev & Frank Thuijsman & Joel S. Brown & Boudewijn Burgering & Kateřina Staňková, 2022. "The Contribution of Evolutionary Game Theory to Understanding and Treating Cancer," Dynamic Games and Applications, Springer, vol. 12(2), pages 313-342, June.
    7. Abernethy, Sam & Gooding, Robert J., 2018. "The importance of chaotic attractors in modelling tumour growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 268-277.
    8. C. Kaya & Helmut Maurer, 2014. "A numerical method for nonconvex multi-objective optimal control problems," Computational Optimization and Applications, Springer, vol. 57(3), pages 685-702, April.
    9. Maria Kleshnina & Sabrina Streipert & Joel S. Brown & Kateřina Staňková, 2023. "Game Theory for Managing Evolving Systems: Challenges and Opportunities of Including Vector-Valued Strategies and Life-History Traits," Dynamic Games and Applications, Springer, vol. 13(4), pages 1130-1155, December.
    10. Xiang Wu & Kanjian Zhang & Changyin Sun, 2013. "Parameter Tuning of Multi-Proportional-Integral-Derivative Controllers Based on Optimal Switching Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 159(2), pages 454-472, November.
    11. Kaya, C. Yalcin, 2004. "Time-optimal switching control for the US cocaine epidemic," Socio-Economic Planning Sciences, Elsevier, vol. 38(1), pages 57-72, March.
    12. Yi Jiang & Yi He & Jie Sun, 2011. "Subdifferential properties of the minimal time function of linear control systems," Journal of Global Optimization, Springer, vol. 51(3), pages 395-412, November.
    13. Péter Bayer & Jeffrey West, 2023. "Games and the Treatment Convexity of Cancer," Dynamic Games and Applications, Springer, vol. 13(4), pages 1088-1105, December.
    14. Christian Hilbe & Maria Kleshnina & Kateřina Staňková, 2023. "Evolutionary Games and Applications: Fifty Years of ‘The Logic of Animal Conflict’," Dynamic Games and Applications, Springer, vol. 13(4), pages 1035-1048, December.
    15. K. H. Wong & H. W. J. Lee & C. K. Chan & C. Myburgh, 2013. "Control Parametrization and Finite Element Method for Controlling Multi-species Reactive Transport in an Underground Channel," Journal of Optimization Theory and Applications, Springer, vol. 157(1), pages 168-187, April.
    16. G. Vossen, 2010. "Switching Time Optimization for Bang-Bang and Singular Controls," Journal of Optimization Theory and Applications, Springer, vol. 144(2), pages 409-429, February.
    17. Nahid Banihashemi & C. Yalçın Kaya, 2013. "Inexact Restoration for Euler Discretization of Box-Constrained Optimal Control Problems," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 726-760, March.
    18. Troy Day & Andrew F Read, 2016. "Does High-Dose Antimicrobial Chemotherapy Prevent the Evolution of Resistance?," PLOS Computational Biology, Public Library of Science, vol. 12(1), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:19:p:4025-:d:1245506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.