IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i18p3895-d1238890.html
   My bibliography  Save this article

On the Stability of a Convective Flow with Nonlinear Heat Sources

Author

Listed:
  • Armands Gritsans

    (Department of Physics and Mathematics, Daugavpils University, LV-5401 Daugavpils, Latvia
    These authors contributed equally to this work.)

  • Andrei Kolyshkin

    (Institute of Applied Mathematics, Riga Technical University, Zunda Embankment 10, LV-1048 Riga, Latvia
    These authors contributed equally to this work.)

  • Felix Sadyrbaev

    (Institute of Mathematics and Computer Science, University of Latvia, LV-1459 Riga, Latvia
    These authors contributed equally to this work.)

  • Inara Yermachenko

    (Department of Physics and Mathematics, Daugavpils University, LV-5401 Daugavpils, Latvia
    These authors contributed equally to this work.)

Abstract

The linear stability of a convective flow in a vertical fluid layer caused by nonlinear heat sources in the presence of cross-flow through the walls of the channel is investigated in this paper. This study is relevant to the analysis of factors that affect the effectiveness of biomass thermal conversion. The nonlinear problem for the base flow temperature is investigated in detail using the Krasnosel’skiĭ–Guo cone expansion/contraction theorem. It is shown that a different number of solutions can exist depending on the values of the parameters. Estimates for the norm of the solutions are obtained. The linear stability problem is solved numerically by a collocation method based on Chebyshev polynomials. It is shown that the increase in the cross-flow intensity stabilizes the flow, but there is also a small region of the radial Reynolds numbers where the flow is destabilized.

Suggested Citation

  • Armands Gritsans & Andrei Kolyshkin & Felix Sadyrbaev & Inara Yermachenko, 2023. "On the Stability of a Convective Flow with Nonlinear Heat Sources," Mathematics, MDPI, vol. 11(18), pages 1-24, September.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:3895-:d:1238890
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/18/3895/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/18/3895/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Banerjee, Abhisek & Paul, Diplina, 2021. "Developments and applications of porous medium combustion: A recent review," Energy, Elsevier, vol. 221(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Pourali, Mostafa & Esfahani, Javad Abolfazli, 2022. "Performance analysis of a micro-scale integrated hydrogen production system by analytical approach, machine learning, and response surface methodology," Energy, Elsevier, vol. 255(C).
    3. Meznah M. Alanazi & Awatif A. Hendi & Bagh Ali & Sonia Majeed & Ahmed Kadhim Hussein & Nehad Ali Shah, 2023. "Significance of Darcy–Forchheimer Law, Activation Energy, and Brownian Motion of Tiny Particles on the Dynamics of Rotating MHD Micropolar Nanofluid," Mathematics, MDPI, vol. 11(4), pages 1-13, February.
    4. Yang, Li & Cao, Yunqi & Jia, Zhixuan & Liu, Fang & Song, Zhengchang, 2023. "Properties and mechanisms of low concentration methane catalytic combustion in porous media supported with transition metal oxides," Applied Energy, Elsevier, vol. 350(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:3895-:d:1238890. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.