IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i13p2855-d1179377.html
   My bibliography  Save this article

Subgroup Identification in Survival Outcome Data Based on Concordance Probability Measurement

Author

Listed:
  • Shengli An

    (Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou 510515, China)

  • Peter Zhang

    (Otsuka Pharmaceutical Development & Commercialization Inc., Rockville, MD 20878, USA)

  • Hong-Bin Fang

    (Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University, Washington, DC 20057, USA)

Abstract

Identifying a subgroup of patients who may have an enhanced treatment effect in a randomized clinical trial has received increasing attention recently. For time-to-event outcomes, it is a challenge to define the effectiveness of a treatment and to choose a cutoff time point for identifying subgroup membership, especially in trials in which the two treatment arms do not differ in overall survival. In this paper, we propose a mixture cure model to identify a subgroup for a new treatment that was compared to a classical treatment (or placebo) in a randomized clinical trial with respect to survival time. Using the concordance probability measurement ( K -index), we propose a statistic to test the existence of subgroups with effective treatments in the treatment arm. Subsequently, the subgroup is defined by a limited number of covariates based on the estimated area under the curve (AUC). The performance of this method in different scenarios is assessed through simulation studies. A real data example is also provided for illustration.

Suggested Citation

  • Shengli An & Peter Zhang & Hong-Bin Fang, 2023. "Subgroup Identification in Survival Outcome Data Based on Concordance Probability Measurement," Mathematics, MDPI, vol. 11(13), pages 1-10, June.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:13:p:2855-:d:1179377
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/13/2855/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/13/2855/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ruo-fan Wu & Ming Zheng & Wen Yu, 2016. "Subgroup Analysis with Time-to-Event Data Under a Logistic-Cox Mixture Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 863-878, September.
    2. T. Loeys & E. Goetghebeur, 2003. "A Causal Proportional Hazards Estimator for the Effect of Treatment Actually Received in a Randomized Trial with All-or-Nothing Compliance," Biometrics, The International Biometric Society, vol. 59(1), pages 100-105, March.
    3. Judy P. Sy & Jeremy M. G. Taylor, 2000. "Estimation in a Cox Proportional Hazards Cure Model," Biometrics, The International Biometric Society, vol. 56(1), pages 227-236, March.
    4. Xiao Song & Margaret Pepe, 2004. "Evaluating Markers for Selecting a Patient's Treatment," UW Biostatistics Working Paper Series 1029, Berkeley Electronic Press.
    5. Lihui Zhao & Lu Tian & Tianxi Cai & Brian Claggett & L. J. Wei, 2013. "Effectively Selecting a Target Population for a Future Comparative Study," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 527-539, June.
    6. Jack Cuzick & Peter Sasieni & Jonathan Myles & Jonathan Tyrer, 2007. "Estimating the effect of treatment in a proportional hazards model in the presence of non‐compliance and contamination," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 565-588, September.
    7. Mithat Gonen & Glenn Heller, 2005. "Concordance probability and discriminatory power in proportional hazards regression," Biometrika, Biometrika Trust, vol. 92(4), pages 965-970, December.
    8. Kehl, Victoria & Ulm, Kurt, 2006. "Responder identification in clinical trials with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 50(5), pages 1338-1355, March.
    9. L. Altstein & G. Li, 2013. "Latent Subgroup Analysis of a Randomized Clinical Trial through a Semiparametric Accelerated Failure Time Mixture Model," Biometrics, The International Biometric Society, vol. 69(1), pages 52-61, March.
    10. Xiao Song & Margaret Sullivan Pepe, 2004. "Evaluating Markers for Selecting a Patient's Treatment," Biometrics, The International Biometric Society, vol. 60(4), pages 874-883, December.
    11. Juan Shen & Xuming He, 2015. "Inference for Subgroup Analysis With a Structured Logistic-Normal Mixture Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 303-312, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Jin & Wenbin Lu & Yu Chen & Mengling Liu, 2023. "Change‐plane analysis for subgroup detection with a continuous treatment," Biometrics, The International Biometric Society, vol. 79(3), pages 1920-1933, September.
    2. Ailin Fan & Rui Song & Wenbin Lu, 2017. "Change-Plane Analysis for Subgroup Detection and Sample Size Calculation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 769-778, April.
    3. Ruo-fan Wu & Ming Zheng & Wen Yu, 2016. "Subgroup Analysis with Time-to-Event Data Under a Logistic-Cox Mixture Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 863-878, September.
    4. Ying Huang & Juhee Cho & Youyi Fong, 2021. "Threshold‐based subgroup testing in logistic regression models in two‐phase sampling designs," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 291-311, March.
    5. Xu Gao & Weining Shen & Jing Ning & Ziding Feng & Jianhua Hu, 2022. "Addressing patient heterogeneity in disease predictive model development," Biometrics, The International Biometric Society, vol. 78(3), pages 1045-1055, September.
    6. Roland A. Matsouaka & Junlong Li & Tianxi Cai, 2014. "Evaluating marker-guided treatment selection strategies," Biometrics, The International Biometric Society, vol. 70(3), pages 489-499, September.
    7. Xifen Huang & Chaosong Xiong & Jinfeng Xu & Jianhua Shi & Jinhong Huang, 2022. "Mixture Modeling of Time-to-Event Data in the Proportional Odds Model," Mathematics, MDPI, vol. 10(18), pages 1-11, September.
    8. Juan Shen & Xuming He, 2015. "Inference for Subgroup Analysis With a Structured Logistic-Normal Mixture Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 303-312, March.
    9. Ying Huang & Eric Laber, 2016. "Personalized Evaluation of Biomarker Value: A Cost-Benefit Perspective," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(1), pages 43-65, June.
    10. Veronika Skrivankova & Patrick J. Heagerty, 2018. "Single index methods for evaluation of marker†guided treatment rules based on multivariate marker panels," Biometrics, The International Biometric Society, vol. 74(2), pages 663-672, June.
    11. Ying Huang & Youyi Fong, 2014. "Identifying optimal biomarker combinations for treatment selection via a robust kernel method," Biometrics, The International Biometric Society, vol. 70(4), pages 891-901, December.
    12. Wentian Guo & Yuan Ji & Daniel V. T. Catenacci, 2017. "A subgroup cluster-based Bayesian adaptive design for precision medicine," Biometrics, The International Biometric Society, vol. 73(2), pages 367-377, June.
    13. James Y. Dai & C. Jason Liang & Michael LeBlanc & Ross L. Prentice & Holly Janes, 2018. "Case†only approach to identifying markers predicting treatment effects on the relative risk scale," Biometrics, The International Biometric Society, vol. 74(2), pages 753-763, June.
    14. Hui Nie & Jing Cheng & Dylan S. Small, 2011. "Inference for the Effect of Treatment on Survival Probability in Randomized Trials with Noncompliance and Administrative Censoring," Biometrics, The International Biometric Society, vol. 67(4), pages 1397-1405, December.
    15. Chaeryon Kang & Holly Janes & Ying Huang, 2014. "Combining biomarkers to optimize patient treatment recommendations," Biometrics, The International Biometric Society, vol. 70(3), pages 695-707, September.
    16. Linbo Wang & Eric Tchetgen Tchetgen & Torben Martinussen & Stijn Vansteelandt, 2023. "Instrumental variable estimation of the causal hazard ratio," Biometrics, The International Biometric Society, vol. 79(2), pages 539-550, June.
    17. Janes Holly & Brown Marshall D. & Huang Ying & Pepe Margaret S., 2014. "An Approach to Evaluating and Comparing Biomarkers for Patient Treatment Selection," The International Journal of Biostatistics, De Gruyter, vol. 10(1), pages 1-23, May.
    18. Yilong Zhang & Xiaoxia Han & Yongzhao Shao, 2021. "The ROC of Cox proportional hazards cure models with application in cancer studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(2), pages 195-215, April.
    19. Ditte Nørbo Sørensen & Torben Martinussen & Eric Tchetgen Tchetgen, 2019. "A causal proportional hazards estimator under homogeneous or heterogeneous selection in an IV setting," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 639-659, October.
    20. Ying Huang & Peter B. Gilbert & Holly Janes, 2012. "Assessing Treatment-Selection Markers using a Potential Outcomes Framework," Biometrics, The International Biometric Society, vol. 68(3), pages 687-696, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:13:p:2855-:d:1179377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.