IDEAS home Printed from https://ideas.repec.org/p/bep/uwabio/1029.html
   My bibliography  Save this paper

Evaluating Markers for Selecting a Patient's Treatment

Author

Listed:
  • Xiao Song

    (University of Washington)

  • Margaret Pepe

    (University of Washington)

Abstract

Selecting the best treatment for a patient's disease may be facilitated by evaluating clinical characteristics or biomarker measurements at diagnosis. We consider how to evaluate the potential of such measurements to impact on treatment selection algorithms. For example, magnetic resonance neurographic imaging is potentially useful for deciding whether a patient should be treated surgically for carpal tunnel syndrome or if he/she should receive less invasive conservative therapy. We propose a graphical display, the selection impact (SI) curve, that shows the population response rate as a function of treatment selection criteria based on the marker. The curve can be useful for choosing a treatment policy that incorporates information on the patient's marker value exceeding a threshold. The SI curve can be estimated using data from a comparative randomized trial conducted in the population as long as treatment assignment in the trial is independent of the predictive marker. Estimating the SI curve is therefore part of a post-hoc analysis to determine if the marker identifies patients that are more likely to benefit from one treatment over another. Nonparametric and parametric estimates of the SI curve are proposed in this paper. Asymptotic distribution theory is used to evaluate the relative efficiencies of the estimators. Simulation studies show that inference is straightforward with realistic sample sizes. We illustrate the SI curve and statistical inference for it with data motivated by an ongoing trial of surgery versus conservative therapy for carpal tunnel syndrome.

Suggested Citation

  • Xiao Song & Margaret Pepe, 2004. "Evaluating Markers for Selecting a Patient's Treatment," UW Biostatistics Working Paper Series 1029, Berkeley Electronic Press.
  • Handle: RePEc:bep:uwabio:1029
    Note: oai:bepress.com:uwbiostat-1029
    as

    Download full text from publisher

    File URL: http://www.bepress.com/cgi/viewcontent.cgi?article=1029&context=uwbiostat
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruo-fan Wu & Ming Zheng & Wen Yu, 2016. "Subgroup Analysis with Time-to-Event Data Under a Logistic-Cox Mixture Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 863-878, September.
    2. Ying Huang & Eric Laber, 2016. "Personalized Evaluation of Biomarker Value: A Cost-Benefit Perspective," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(1), pages 43-65, June.
    3. Peng Jin & Wenbin Lu & Yu Chen & Mengling Liu, 2023. "Change‐plane analysis for subgroup detection with a continuous treatment," Biometrics, The International Biometric Society, vol. 79(3), pages 1920-1933, September.
    4. Veronika Skrivankova & Patrick J. Heagerty, 2018. "Single index methods for evaluation of marker†guided treatment rules based on multivariate marker panels," Biometrics, The International Biometric Society, vol. 74(2), pages 663-672, June.
    5. Ying Huang & Youyi Fong, 2014. "Identifying optimal biomarker combinations for treatment selection via a robust kernel method," Biometrics, The International Biometric Society, vol. 70(4), pages 891-901, December.
    6. Janes Holly & Brown Marshall D. & Huang Ying & Pepe Margaret S., 2014. "An Approach to Evaluating and Comparing Biomarkers for Patient Treatment Selection," The International Journal of Biostatistics, De Gruyter, vol. 10(1), pages 1-23, May.
    7. James Y. Dai & C. Jason Liang & Michael LeBlanc & Ross L. Prentice & Holly Janes, 2018. "Case†only approach to identifying markers predicting treatment effects on the relative risk scale," Biometrics, The International Biometric Society, vol. 74(2), pages 753-763, June.
    8. Chaeryon Kang & Holly Janes & Ying Huang, 2014. "Combining biomarkers to optimize patient treatment recommendations," Biometrics, The International Biometric Society, vol. 70(3), pages 695-707, September.
    9. Zhang Zhiwei & Ma Shujie & Nie Lei & Soon Guoxing, 2017. "A Quantitative Concordance Measure for Comparing and Combining Treatment Selection Markers," The International Journal of Biostatistics, De Gruyter, vol. 13(1), pages 1-24, May.
    10. Roland A. Matsouaka & Junlong Li & Tianxi Cai, 2014. "Evaluating marker-guided treatment selection strategies," Biometrics, The International Biometric Society, vol. 70(3), pages 489-499, September.
    11. Ying Huang & Peter B. Gilbert & Holly Janes, 2012. "Assessing Treatment-Selection Markers using a Potential Outcomes Framework," Biometrics, The International Biometric Society, vol. 68(3), pages 687-696, September.
    12. Shengli An & Peter Zhang & Hong-Bin Fang, 2023. "Subgroup Identification in Survival Outcome Data Based on Concordance Probability Measurement," Mathematics, MDPI, vol. 11(13), pages 1-10, June.
    13. Ying Huang & Juhee Cho & Youyi Fong, 2021. "Threshold‐based subgroup testing in logistic regression models in two‐phase sampling designs," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 291-311, March.
    14. Ailin Fan & Rui Song & Wenbin Lu, 2017. "Change-Plane Analysis for Subgroup Detection and Sample Size Calculation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 769-778, April.
    15. Juan Shen & Xuming He, 2015. "Inference for Subgroup Analysis With a Structured Logistic-Normal Mixture Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 303-312, March.
    16. Xu Gao & Weining Shen & Jing Ning & Ziding Feng & Jianhua Hu, 2022. "Addressing patient heterogeneity in disease predictive model development," Biometrics, The International Biometric Society, vol. 78(3), pages 1045-1055, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bep:uwabio:1029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.bepress.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.