IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i11p2511-d1159394.html
   My bibliography  Save this article

A Novel Model Validation Method Based on Area Metric Disagreement between Accelerated Storage Distributions and Natural Storage Data

Author

Listed:
  • Bin Suo

    (School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China)

  • Yang Qi

    (School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China)

  • Kai Sun

    (Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China)

  • Jingyuan Xu

    (Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China)

Abstract

It has been a challenge to quantify the credibility of the accelerated storage model until now. This paper introduces a quantitative measurement named the CMADT (Creditability Metric of Accelerated Degradation Test), which quantifies the credibility of the accelerated aging model based on available data. The relevant criterion data are obtained from the natural storage test. CMADT is a credibility metric obtained by measuring the difference in the metric area between the probability distribution of the accelerated storage model and its criterion data. In addition, the accelerated aging model might include multiple parameters resulting in several single-parameter CMADTs. This paper proposes a method that integrates several single-parameter CMADT metrics into a single metric to assess the overall credibility of the accelerated storage model. Moreover, CMADT is universal for different scales of sample data. The cases addressed in this paper show that CMADT helps designers and decision-makers judge the credibility of the result obtained by the accelerated storage model intuitively and makes it easier to compare various products horizontally.

Suggested Citation

  • Bin Suo & Yang Qi & Kai Sun & Jingyuan Xu, 2023. "A Novel Model Validation Method Based on Area Metric Disagreement between Accelerated Storage Distributions and Natural Storage Data," Mathematics, MDPI, vol. 11(11), pages 1-18, May.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:11:p:2511-:d:1159394
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/11/2511/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/11/2511/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Scott Ferson & William L. Oberkampf, 2009. "Validation of imprecise probability models," International Journal of Reliability and Safety, Inderscience Enterprises Ltd, vol. 3(1/2/3), pages 3-22.
    2. Li, Wei & Chen, Wei & Jiang, Zhen & Lu, Zhenzhou & Liu, Yu, 2014. "New validation metrics for models with multiple correlated responses," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 1-11.
    3. Luo, Wei & Zhang, Chun-hua & Chen, Xun & Tan, Yuan-yuan, 2015. "Accelerated reliability demonstration under competing failure modes," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 75-84.
    4. Cai, Xia & Tian, Yubin & Ning, Wei, 2019. "Change-point analysis of the failure mechanisms based on accelerated life tests," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 515-522.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ao, Dan & Hu, Zhen & Mahadevan, Sankaran, 2017. "Design of validation experiments for life prediction models," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 22-33.
    2. Zhao, Lufeng & Lu, Zhenzhou & Yun, Wanying & Wang, Wenjin, 2017. "Validation metric based on Mahalanobis distance for models with multiple correlated responses," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 80-89.
    3. Vanslette, Kevin & Tohme, Tony & Youcef-Toumi, Kamal, 2020. "A general model validation and testing tool," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    4. Khalil, Y.F., 2019. "New statistical formulations for determination of qualification test plans of safety instrumented systems (SIS) subject to low/high operational demands," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 196-209.
    5. Mathieu Balesdent & Jérôme Morio & Loïc Brevault, 2016. "Rare Event Probability Estimation in the Presence of Epistemic Uncertainty on Input Probability Distribution Parameters," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 197-216, March.
    6. Zhaojun Yang & Xiaoxu Li & Chuanhai Chen & Hongxun Zhao & Dingyu Yang & Jinyan Guo & Wei Luo, 2019. "Reliability assessment of the spindle systems with a competing risk model," Journal of Risk and Reliability, , vol. 233(2), pages 226-234, April.
    7. Wu, Shuo-Jye & Huang, Syuan-Rong, 2017. "Planning two or more level constant-stress accelerated life tests with competing risks," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 1-8.
    8. Han, David & Bai, Tianyu, 2020. "Design optimization of a simple step-stress accelerated life test – Contrast between continuous and interval inspections with non-uniform step durations," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    9. Li, Wei & Chen, Wei & Jiang, Zhen & Lu, Zhenzhou & Liu, Yu, 2014. "New validation metrics for models with multiple correlated responses," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 1-11.
    10. Ma, Zhonghai & Wang, Shaoping & Ruiz, Cesar & Zhang, Chao & Liao, Haitao & Pohl, Edward, 2020. "Reliability estimation from two types of accelerated testing data considering measurement error," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    11. Xu, Dong & Tian, Yubin & Shi, Junbiao & Wang, Dianpeng & Zhang, Ming & Li, Haijin, 2023. "Reliability analysis and optimal redundancy for a satellite power supply system based on a new dynamic k-out-of-n: G model," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    12. Cheng, Yao & Liao, Haitao & Huang, Zhiyi, 2021. "Optimal degradation-based hybrid double-stage acceptance sampling plan for a heterogeneous product," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    13. Li, Chenzhao & Mahadevan, Sankaran, 2016. "Role of calibration, validation, and relevance in multi-level uncertainty integration," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 32-43.
    14. Wang, Chong & Matthies, Hermann G., 2019. "Novel model calibration method via non-probabilistic interval characterization and Bayesian theory," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 84-92.
    15. Zheng, Huiling & Kong, Xuefeng & Xu, Houbao & Yang, Jun, 2021. "Reliability analysis of products based on proportional hazard model with degradation trend and environmental factor," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    16. Kim, Seong-Joon & Mun, Byeong Min & Bae, Suk Joo, 2019. "A cost-driven reliability demonstration plan based on accelerated degradation tests," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 226-239.
    17. Li, Luyi & Lu, Zhenzhou, 2018. "A new method for model validation with multivariate output," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 579-592.
    18. Kwag, Shinyoung & Gupta, Abhinav & Dinh, Nam, 2018. "Probabilistic risk assessment based model validation method using Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 380-393.
    19. Kim, Wongon & Yoon, Heonjun & Lee, Guesuk & Kim, Taejin & Youn, Byeng D., 2020. "A new calibration metric that considers statistical correlation: Marginal Probability and Correlation Residuals," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    20. Wu, Danqing & Lu, Zhenzhou & Wang, Yanping & Cheng, Lei, 2015. "Model validation and calibration based on component functions of model output," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 59-70.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:11:p:2511-:d:1159394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.