IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i10p2262-d1145025.html
   My bibliography  Save this article

Blockchain-Enabled M2M Communications for UAV-Assisted Data Transmission

Author

Listed:
  • Abdulaziz Aldaej

    (College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia)

  • Tariq Ahamed Ahanger

    (Management Information Systems Department, College of Business Administration, Prince Sattam bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia)

  • Imdad Ullah

    (College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia)

Abstract

Internet of Things (IoT) technology has uncovered a wide range of possibilities in several industrial sectors where smart devices are capable of exchanging real-time data. Machine-to-machine (M2M) data exchange provides a new method for connecting and exchanging data among machine-oriented communication entities (MOCE). Conspicuously, network services will be severely affected if the underneath IoT infrastructure is disrupted. Moreover, it is difficult for MOCEs to re-establish connectivity automatically. Conspicuously, in the current paper, an analysis is performed regarding potential technologies including unmanned aerial vehicles, blockchain, and mobile edge computing (MEC) that can enable the secure establishment of M2M communications networks that have been compromised to maintain the secure transmissible data. Furthermore, a Markov decision process-based joint optimization approach is proposed for blockchain systems that aims to elevate computational power and performance. Additionally, the dueling deep Q-network (DDQ) is incorporated to address the dynamic and complex optimization issue so that UAV selection is ensured to maximize performance. The results of experimental simulation with several statistical attributes suggest that the proposed framework can increase throughput optimally in comparison to state-of-the-art techniques. Additionally, a performance measure of reliability and stability depicts significant enhancement for the proposed framework.

Suggested Citation

  • Abdulaziz Aldaej & Tariq Ahamed Ahanger & Imdad Ullah, 2023. "Blockchain-Enabled M2M Communications for UAV-Assisted Data Transmission," Mathematics, MDPI, vol. 11(10), pages 1-17, May.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:10:p:2262-:d:1145025
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/10/2262/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/10/2262/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdullah Aljumah & Tariq Ahamed Ahanger & Imdad Ullah, 2023. "Heterogeneous Blockchain-Based Secure Framework for UAV Data," Mathematics, MDPI, vol. 11(6), pages 1-14, March.
    2. Jian Wang & Qianggang Wang & Niancheng Zhou & Yuan Chi, 2017. "A Novel Electricity Transaction Mode of Microgrids Based on Blockchain and Continuous Double Auction," Energies, MDPI, vol. 10(12), pages 1-22, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ning Wang & Weisheng Xu & Weihui Shao & Zhiyu Xu, 2019. "A Q-Cube Framework of Reinforcement Learning Algorithm for Continuous Double Auction among Microgrids," Energies, MDPI, vol. 12(15), pages 1-26, July.
    2. Miguel Carpintero-Rentería & David Santos-Martín & Josep M. Guerrero, 2019. "Microgrids Literature Review through a Layers Structure," Energies, MDPI, vol. 12(22), pages 1-22, November.
    3. Hong-Chao Gao & Joon-Ho Choi & Sang-Yun Yun & Seon-Ju Ahn, 2020. "A New Power Sharing Scheme of Multiple Microgrids and an Iterative Pairing-Based Scheduling Method," Energies, MDPI, vol. 13(7), pages 1-20, April.
    4. Peter O’Donovan & Dominic T. J. O’Sullivan, 2019. "A Systematic Analysis of Real-World Energy Blockchain Initiatives," Future Internet, MDPI, vol. 11(8), pages 1-14, August.
    5. Frederik Plewnia, 2019. "The Energy System and the Sharing Economy: Interfaces and Overlaps and What to Learn from Them," Energies, MDPI, vol. 12(3), pages 1-17, January.
    6. Esmat, Ayman & de Vos, Martijn & Ghiassi-Farrokhfal, Yashar & Palensky, Peter & Epema, Dick, 2021. "A novel decentralized platform for peer-to-peer energy trading market with blockchain technology," Applied Energy, Elsevier, vol. 282(PA).
    7. Gourisetti, Sri Nikhil Gupta & Sebastian-Cardenas, D. Jonathan & Bhattarai, Bishnu & Wang, Peng & Widergren, Steve & Borkum, Mark & Randall, Alysha, 2021. "Blockchain smart contract reference framework and program logic architecture for transactive energy systems," Applied Energy, Elsevier, vol. 304(C).
    8. Wenting Zhao & Jun Lv & Xilong Yao & Juanjuan Zhao & Zhixin Jin & Yan Qiang & Zheng Che & Chunwu Wei, 2019. "Consortium Blockchain-Based Microgrid Market Transaction Research," Energies, MDPI, vol. 12(20), pages 1-22, October.
    9. Bing Wang & Weiyang Liu & Min Wang & Wangping Shen, 2020. "Research on Bidding Mechanism for Power Grid with Electric Vehicles Based on Smart Contract Technology," Energies, MDPI, vol. 13(2), pages 1-17, January.
    10. Chen Zhang & Yong Wang & Tao Yang, 2020. "Iterative Auction for P2P Renewable Energy Trading with Dynamic Energy Storage Management," Energies, MDPI, vol. 13(18), pages 1-20, September.
    11. Hamzah Khan & Tariq Masood, 2022. "Impact of Blockchain Technology on Smart Grids," Energies, MDPI, vol. 15(19), pages 1-27, September.
    12. Zhang, Bidan & Du, Yang & Chen, Xiaoyang & Lim, Eng Gee & Jiang, Lin & Yan, Ke, 2022. "A novel adaptive penalty mechanism for Peer-to-Peer energy trading," Applied Energy, Elsevier, vol. 327(C).
    13. Guerrero, Jaysson & Gebbran, Daniel & Mhanna, Sleiman & Chapman, Archie C. & Verbič, Gregor, 2020. "Towards a transactive energy system for integration of distributed energy resources: Home energy management, distributed optimal power flow, and peer-to-peer energy trading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    14. Wang, Longze & Liu, Jinxin & Yuan, Rongfang & Wu, Jing & Zhang, Delong & Zhang, Yan & Li, Meicheng, 2020. "Adaptive bidding strategy for real-time energy management in multi-energy market enhanced by blockchain," Applied Energy, Elsevier, vol. 279(C).
    15. Ayusee Swain & Surender Reddy Salkuti & Kaliprasanna Swain, 2021. "An Optimized and Decentralized Energy Provision System for Smart Cities," Energies, MDPI, vol. 14(5), pages 1-21, March.
    16. Jien Song & Yang Yang & Jie Mei & Gaofeng Zhou & Weiqiang Qiu & Yixing Wang & Lu Xu & Yanran Liu & Jinyu Jiang & Zhenyue Chu & Weitao Tan & Zhenzhi Lin, 2022. "Proxy Re-Encryption-Based Traceability and Sharing Mechanism of the Power Material Data in Blockchain Environment," Energies, MDPI, vol. 15(7), pages 1-19, April.
    17. Xuguang Yu & Gang Li & Chuntian Cheng & Yongjun Sun & Ran Chen, 2019. "Research and Application of Continuous Bidirectional Trading Mechanism in Yunnan Electricity Market," Energies, MDPI, vol. 12(24), pages 1-18, December.
    18. Sara Haghifam & Kazem Zare & Mehdi Abapour & Gregorio Muñoz-Delgado & Javier Contreras, 2020. "A Stackelberg Game-Based Approach for Transactive Energy Management in Smart Distribution Networks," Energies, MDPI, vol. 13(14), pages 1-34, July.
    19. Bogdan Cristian Florea & Dragos Daniel Taralunga, 2020. "Blockchain IoT for Smart Electric Vehicles Battery Management," Sustainability, MDPI, vol. 12(10), pages 1-25, May.
    20. Adamu Sani Yahaya & Nadeem Javaid & Fahad A. Alzahrani & Amjad Rehman & Ibrar Ullah & Affaf Shahid & Muhammad Shafiq, 2020. "Blockchain Based Sustainable Local Energy Trading Considering Home Energy Management and Demurrage Mechanism," Sustainability, MDPI, vol. 12(8), pages 1-28, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:10:p:2262-:d:1145025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.