IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i9p1540-d808143.html
   My bibliography  Save this article

Fractional Dynamics with Depreciation and Obsolescence: Equations with Prabhakar Fractional Derivatives

Author

Listed:
  • Vasily E. Tarasov

    (Faculty of Information Technologies and Applied Mathematics, Moscow Aviation Institute (National Research University), 125993 Moscow, Russia)

Abstract

In economics, depreciation functions (operator kernels) are certain decreasing functions, which are assumed to be equal to unity at zero. Usually, an exponential function is used as a depreciation function. However, exponential functions in operator kernels do not allow simultaneous consideration of memory effects and depreciation effects. In this paper, it is proposed to consider depreciation of a non-exponential type, and simultaneously take into account memory effects by using the Prabhakar fractional derivatives and integrals. Integro-differential operators with the Prabhakar (generalized Mittag-Leffler) function in the kernels are considered. The important distinguishing features of the Prabhakar function in operator kernels, which allow us to take into account non-exponential depreciation and fading memory in economics, are described. In this paper, equations with the following operators are considered: (a) the Prabhakar fractional integral, which contains the Prabhakar function as the kernels; (b) the Prabhakar fractional derivative of Riemann–Liouville type proposed by Kilbas, Saigo, and Saxena in 2004, which is left inverse for the Prabhakar fractional integral; and (c) the Prabhakar operator of Caputo type proposed by D’Ovidio and Polito, which is also called the regularized Prabhakar fractional derivative. The solutions of fractional differential equations with the Prabhakar operator and its special cases are suggested. The asymptotic behavior of these solutions is discussed.

Suggested Citation

  • Vasily E. Tarasov, 2022. "Fractional Dynamics with Depreciation and Obsolescence: Equations with Prabhakar Fractional Derivatives," Mathematics, MDPI, vol. 10(9), pages 1-34, May.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1540-:d:808143
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/9/1540/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/9/1540/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vasily E. Tarasov & Svetlana S. Tarasova, 2020. "Fractional Derivatives and Integrals: What Are They Needed For?," Mathematics, MDPI, vol. 8(2), pages 1-22, January.
    2. Yuri Luchko, 2021. "General Fractional Integrals and Derivatives with the Sonine Kernels," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    3. Vasily E. Tarasov, 2020. "Mathematical Economics: Application of Fractional Calculus," Mathematics, MDPI, vol. 8(5), pages 1-3, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuri Luchko, 2023. "Fractional Integrals and Derivatives: “True” versus “False”," Mathematics, MDPI, vol. 11(13), pages 1-2, July.
    2. Monica Aureliana Petcu & Liliana Ionescu-Feleaga & Bogdan-Ștefan Ionescu & Dumitru-Florin Moise, 2023. "A Decade for the Mathematics : Bibliometric Analysis of Mathematical Modeling in Economics, Ecology, and Environment," Mathematics, MDPI, vol. 11(2), pages 1-30, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vasily E. Tarasov, 2023. "Multi-Kernel General Fractional Calculus of Arbitrary Order," Mathematics, MDPI, vol. 11(7), pages 1-32, April.
    2. Vasily E. Tarasov, 2020. "Exact Solutions of Bernoulli and Logistic Fractional Differential Equations with Power Law Coefficients," Mathematics, MDPI, vol. 8(12), pages 1-11, December.
    3. Yuri Luchko, 2022. "Fractional Differential Equations with the General Fractional Derivatives of Arbitrary Order in the Riemann–Liouville Sense," Mathematics, MDPI, vol. 10(6), pages 1-24, March.
    4. Yuri Luchko, 2023. "Fractional Integrals and Derivatives: “True” versus “False”," Mathematics, MDPI, vol. 11(13), pages 1-2, July.
    5. Vasily E. Tarasov, 2021. "Integral Equations of Non-Integer Orders and Discrete Maps with Memory," Mathematics, MDPI, vol. 9(11), pages 1-12, May.
    6. Mohammed Al-Refai & Yuri Luchko, 2023. "The General Fractional Integrals and Derivatives on a Finite Interval," Mathematics, MDPI, vol. 11(4), pages 1-13, February.
    7. Vasily E. Tarasov, 2023. "General Fractional Calculus in Multi-Dimensional Space: Riesz Form," Mathematics, MDPI, vol. 11(7), pages 1-20, March.
    8. Dmitrii Tverdyi & Roman Parovik, 2023. "Hybrid GPU–CPU Efficient Implementation of a Parallel Numerical Algorithm for Solving the Cauchy Problem for a Nonlinear Differential Riccati Equation of Fractional Variable Order," Mathematics, MDPI, vol. 11(15), pages 1-21, July.
    9. Muñoz-Vázquez, Aldo Jonathan & Martínez-Fuentes, Oscar & Fernández-Anaya, Guillermo, 2022. "Generalized PI control for robust stabilization of dynamical systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 22-35.
    10. Jimin Yu & Zeming Zhao & Yabin Shao, 2023. "On Cauchy Problems of Caputo Fractional Differential Inclusion with an Application to Fractional Non-Smooth Systems," Mathematics, MDPI, vol. 11(3), pages 1-18, January.
    11. Tarasov, Vasily E., 2023. "Nonlocal statistical mechanics: General fractional Liouville equations and their solutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    12. Vasily E. Tarasov, 2021. "General Fractional Calculus: Multi-Kernel Approach," Mathematics, MDPI, vol. 9(13), pages 1-14, June.
    13. Sk, Tahajuddin & Biswas, Santosh & Sardar, Tridip, 2022. "The impact of a power law-induced memory effect on the SARS-CoV-2 transmission," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    14. Vasily E. Tarasov, 2021. "General Fractional Vector Calculus," Mathematics, MDPI, vol. 9(21), pages 1-87, November.
    15. J. Alberto Conejero & Jonathan Franceschi & Enric Picó-Marco, 2022. "Fractional vs. Ordinary Control Systems: What Does the Fractional Derivative Provide?," Mathematics, MDPI, vol. 10(15), pages 1-18, August.
    16. Vasily E. Tarasov, 2021. "General Fractional Dynamics," Mathematics, MDPI, vol. 9(13), pages 1-26, June.
    17. Vasily E. Tarasov, 2023. "General Fractional Noether Theorem and Non-Holonomic Action Principle," Mathematics, MDPI, vol. 11(20), pages 1-35, October.
    18. Ivana Eliašová & Michal Fečkan, 2022. "Poincaré Map for Discontinuous Fractional Differential Equations," Mathematics, MDPI, vol. 10(23), pages 1-16, November.
    19. Maryam Al-Kandari & Latif A-M. Hanna & Yuri Luchko, 2022. "Operational Calculus for the General Fractional Derivatives of Arbitrary Order," Mathematics, MDPI, vol. 10(9), pages 1-17, May.
    20. Vasily E. Tarasov, 2020. "Non-Linear Macroeconomic Models of Growth with Memory," Mathematics, MDPI, vol. 8(11), pages 1-22, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1540-:d:808143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.