IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i10p1625-d812368.html
   My bibliography  Save this article

Transport Equation for Small Systems and Nonadditive Entropy

Author

Listed:
  • Eugenio Megías

    (Departamento de Física Atómica, Molecular y Nuclear and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Avenida de Fuente Nueva s/n, 18071 Granada, Spain
    These authors contributed equally to this work.)

  • Jose A. S. Lima

    (Instituto de Astronomia e Geofísica da Universidade de São Paulo, Rua do Matão 1371, Butantã, São Paulo 05580-090, SP, Brazil
    These authors contributed equally to this work.)

  • Airton Deppman

    (Instituto de Física, Universidade de São Paulo, Rua do Matão 1371, Butantã, São Paulo 05580-090, SP, Brazil
    These authors contributed equally to this work.)

Abstract

The nonadditive entropy introduced by Tsallis in 1988 has been used in different fields and generalizes the Boltzmann entropy, extending the possibilities of the application of the statistical methods developed in the context of Mechanics. Here, we investigate one of the last points of the theory that is still under discussion: the source term of the nonextensive transport equation. Based on a simple system, we show that the nonadditivity is a direct consequence of the phase space topology and derive the source term that leads to the nonextensive transport equation.

Suggested Citation

  • Eugenio Megías & Jose A. S. Lima & Airton Deppman, 2022. "Transport Equation for Small Systems and Nonadditive Entropy," Mathematics, MDPI, vol. 10(10), pages 1-9, May.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:10:p:1625-:d:812368
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/10/1625/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/10/1625/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Borges, Ernesto P., 2004. "A possible deformed algebra and calculus inspired in nonextensive thermostatistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(1), pages 95-101.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Habib, Khandker Nurul, 2023. "Rational inattention in discrete choice models: Estimable specifications of RI-multinomial logit (RI-MNL) and RI-nested logit (RI-NL) models," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 53-70.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. da Silva, Sérgio Luiz Eduardo Ferreira, 2021. "Newton’s cooling law in generalised statistical mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    2. Kin Keung Lai & Shashi Kant Mishra & Ravina Sharma & Manjari Sharma & Bhagwat Ram, 2023. "A Modified q-BFGS Algorithm for Unconstrained Optimization," Mathematics, MDPI, vol. 11(6), pages 1-24, March.
    3. Nelson, Kenric P., 2015. "A definition of the coupled-product for multivariate coupled-exponentials," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 422(C), pages 187-192.
    4. Nelson, Kenric P. & Umarov, Sabir R. & Kon, Mark A., 2017. "On the average uncertainty for systems with nonlinear coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 30-43.
    5. Megías, E. & Timóteo, V.S. & Gammal, A. & Deppman, A., 2022. "Bose–Einstein condensation and non-extensive statistics for finite systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    6. Suyari, Hiroki & Wada, Tatsuaki, 2008. "Multiplicative duality, q-triplet and (μ,ν,q)-relation derived from the one-to-one correspondence between the (μ,ν)-multinomial coefficient and Tsallis entropy Sq," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 71-83.
    7. Martinez, Alexandre Souto & González, Rodrigo Silva & Terçariol, César Augusto Sangaletti, 2008. "Continuous growth models in terms of generalized logarithm and exponential functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5679-5687.
    8. Nelson, Kenric P. & Kon, Mark A. & Umarov, Sabir R., 2019. "Use of the geometric mean as a statistic for the scale of the coupled Gaussian distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 248-257.
    9. Miguel A Ré & Rajeev K Azad, 2014. "Generalization of Entropy Based Divergence Measures for Symbolic Sequence Analysis," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-11, April.
    10. Trindade, Marco A.S. & Floquet, Sergio & Filho, Lourival M. Silva, 2020. "Portfolio theory, information theory and Tsallis statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    11. Marco A. S. Trindade & Sergio Floquet & Lourival M. S. Filho, 2018. "Portfolio Theory, Information Theory and Tsallis Statistics," Papers 1811.07237, arXiv.org, revised Oct 2019.
    12. Tinessa, Fiore, 2021. "Closed-form random utility models with mixture distributions of random utilities: Exploring finite mixtures of qGEV models," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 262-288.
    13. Shang, Binbin & Shang, Pengjian, 2020. "Binary indices of time series complexity measures and entropy plane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    14. Oikonomou, Th., 2007. "Tsallis, Rényi and nonextensive Gaussian entropy derived from the respective multinomial coefficients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 119-134.
    15. Goulart, A.G. & Lazo, M.J. & Suarez, J.M.S., 2020. "A deformed derivative model for turbulent diffusion of contaminants in the atmosphere," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    16. Chikaraishi, Makoto & Nakayama, Shoichiro, 2016. "Discrete choice models with q-product random utilities," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 576-595.
    17. Nakamura, Gilberto M. & de Martini, Alexandre H. & Martinez, Alexandre S., 2019. "Extension of inverse q-Fourier transform via conformal mapping," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 106-111.
    18. Suyari, Hiroki, 2006. "Mathematical structures derived from the q-multinomial coefficient in Tsallis statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 368(1), pages 63-82.
    19. Oikonomou, Thomas & Tirnakli, Ugur, 2009. "Generalized entropic structures and non-generality of Jaynes’ Formalism," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3027-3034.
    20. Duarte Queirós, Sílvio M., 2012. "On generalisations of the log-Normal distribution by means of a new product definition in the Kapteyn process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(13), pages 3594-3606.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:10:p:1625-:d:812368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.