IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i4p116-d343966.html
   My bibliography  Save this article

Environmental Transformations in the Area of the Kuźnica Warężyńska Sand Mine, Southern Poland

Author

Listed:
  • Jacek Różkowski

    (Faculty of Natural Sciences, University of Silesia in Katowice, 41-200 Sosnowiec, Poland)

  • Oimahmad Rahmonov

    (Faculty of Natural Sciences, University of Silesia in Katowice, 41-200 Sosnowiec, Poland)

  • Artur Szymczyk

    (Faculty of Natural Sciences, University of Silesia in Katowice, 41-200 Sosnowiec, Poland)

Abstract

On the basis of the analysis and interpretation of maps, published literature, and environmental reconnaissance, this article discusses environmental transformations in the area of the Kuźnica Warężyńska sand mine in southern Poland over the years 1944–2015. A comprehensive ecological analysis was carried out concerning spatial development, mining activity, hydrogeological and hydrological conditions as well as the biotic environment. Among the unfavourable changes found were a drastic reduction in the agricultural function of the area (from 7.03 to 0.47 km 2 ), mainly due to periodic activity of sand mine in 1967–2002, covering an area of about 5.80 km 2 , the destruction of the original biocenoses, the depletion and deterioration in quality of the groundwater resources, and man-made transformations of the hydrographic network (during the mine’s activity its length reached over 103 km). Vegetation changes during the 70-year period examined were closely related to human mining activity. The greatest changes occurred at the end of the 1960s when large areas of pine forest were cut down. The analysis of vegetation in the former workings demonstrated that the diversity of habitats within the workings results in a significant increase in species (367 plant species, 2002 birds) and community diversity ( Molinion caeruleae , Molinion caeruleae, three Natura habitats) there compared to the adjacent areas. On the other hand, favourable changes included the construction of a flood control reservoir, with an area of 560 ha and a volume of 51 million m 3 , created in 2003–2005, making the area more attractive for tourism and recreation, and an increase in biodiversity, including the establishment of a Natura 2000 site.

Suggested Citation

  • Jacek Różkowski & Oimahmad Rahmonov & Artur Szymczyk, 2020. "Environmental Transformations in the Area of the Kuźnica Warężyńska Sand Mine, Southern Poland," Land, MDPI, vol. 9(4), pages 1-16, April.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:4:p:116-:d:343966
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/4/116/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/4/116/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Iwona Szumacher & Piotr Pabjanek, 2017. "Temporal Changes in Ecosystem Services in European Cities in the Continental Biogeographical Region in the Period from 1990–2012," Sustainability, MDPI, vol. 9(4), pages 1-14, April.
    2. Sonja Kivinen, 2017. "Sustainable Post-Mining Land Use: Are Closed Metal Mines Abandoned or Re-Used Space?," Sustainability, MDPI, vol. 9(10), pages 1-18, September.
    3. Karel Prach & Kl�ra Řehounkov� & Jiř� Řehounek & Petra Konvalinkov�, 2011. "Ecological Restoration of Central European Mining Sites: A Summary of a Multi-site Analysis," Landscape Research, Taylor & Francis Journals, vol. 36(2), pages 263-268, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Izabela Jonek-Kowalska & Marian Turek, 2022. "The Economic Situation of Polish Cities in Post-Mining Regions. Long-Term Analysis on the Example of the Upper Silesian Coal Basin," Energies, MDPI, vol. 15(9), pages 1-21, April.
    2. Walter Leal Filho & Julian Hunt & Alexandros Lingos & Johannes Platje & Lara Werncke Vieira & Markus Will & Marius Dan Gavriletea, 2021. "The Unsustainable Use of Sand: Reporting on a Global Problem," Sustainability, MDPI, vol. 13(6), pages 1-16, March.
    3. Oimahmad Rahmonov & Jacek Różkowski & Grzegorz Klys, 2022. "The Managing and Restoring of Degraded Land in Post-Mining Areas," Land, MDPI, vol. 11(2), pages 1-3, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Marwan Al Heib & Christian Franck & Hippolyte Djizanne & Marie Degas, 2023. "Post-Mining Multi-Hazard Assessment for Sustainable Development," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
    2. Katarzyna Pactwa & Justyna Woźniak & Michał Dudek, 2020. "Sustainable Social and Environmental Evaluation of Post-Industrial Facilities in a Closed Loop Perspective in Coal-Mining Areas in Poland," Sustainability, MDPI, vol. 13(1), pages 1-16, December.
    3. Yang Yu & Shen-En Chen & Ka-Zhong Deng & Peng Wang & Hong-Dong Fan, 2018. "Subsidence Mechanism and Stability Assessment Methods for Partial Extraction Mines for Sustainable Development of Mining Cities—A Review," Sustainability, MDPI, vol. 10(1), pages 1-21, January.
    4. Christina G. Siontorou, 2023. "Fair Development Transition of Lignite Areas: Key Challenges and Sustainability Prospects," Sustainability, MDPI, vol. 15(16), pages 1-14, August.
    5. Sonja Kivinen & Kaarina Vartiainen & Timo Kumpula, 2018. "People and Post-Mining Environments: PPGIS Mapping of Landscape Values, Knowledge Needs, and Future Perspectives in Northern Finland," Land, MDPI, vol. 7(4), pages 1-23, December.
    6. Izabela-Maria Apostu & Maria Lazar & Florin Faur, 2021. "A Suggested Methodology for Assessing the Failure Risk of the Final Slopes of Former Open-Pits in Case of Flooding," Sustainability, MDPI, vol. 13(12), pages 1-27, June.
    7. Honglei Liu & Qiang Wu & Jianxin Chen & Mingjun Wang & Di Zhao & Cheng Duan, 2021. "Environmental Impacts Related to Closed Mines in Inner Mongolia," Sustainability, MDPI, vol. 13(23), pages 1-19, December.
    8. Eshetu Yirsaw & Wei Wu & Xiaoping Shi & Habtamu Temesgen & Belew Bekele, 2017. "Land Use/Land Cover Change Modeling and the Prediction of Subsequent Changes in Ecosystem Service Values in a Coastal Area of China, the Su-Xi-Chang Region," Sustainability, MDPI, vol. 9(7), pages 1-17, July.
    9. Marta Nalej & Elżbieta Lewandowicz, 2023. "An Analysis of Recreational and Leisure Areas in Polish Counties with the Use of Geographically Weighted Regression," Sustainability, MDPI, vol. 16(1), pages 1-26, December.
    10. Ayanda N. Shabalala & Phumelele D. Ngwenya & Moses Timana, 2022. "Heavy Metal Contamination and Health Risk of Soils and Vegetables Grown Near a Gold Mine Area: A Case Study of Barberton, South Africa," Academic Journal of Chemistry, Academic Research Publishing Group, vol. 8(3), pages 197-207, 07-2022.
    11. Grzyb, Tomasz & Kulczyk, Sylwia & Derek, Marta & Woźniak, Edyta, 2021. "Using social media to assess recreation across urban green spaces in times of abrupt change," Ecosystem Services, Elsevier, vol. 49(C).
    12. Wilker, Jost & Rusche, Karsten & Benning, Alexander & MacDonald, Michael A. & Blaen, Phillip, 2016. "Applying ecosystem benefit valuation to inform quarry restoration planning," Ecosystem Services, Elsevier, vol. 20(C), pages 44-55.
    13. Herlin Chien, 2022. "Evaluating impacts of researchers to enable sustainability transition: using urban ecosystem service literature as an exemplary field," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2345-2361, February.
    14. Stefanie Streit & Michael Tost & Katharina Gugerell, 2023. "Perspectives on Closure and Revitalisation of Extraction Sites and Sustainability: A Q-Methodology Study," Resources, MDPI, vol. 12(2), pages 1-17, February.
    15. Oimahmad Rahmonov & Weronika Dragan & Jerzy Cabała & Robert Krzysztofik, 2023. "Long-Term Vegetation Changes and Socioeconomic Effects of River Engineering in Industrialized Areas (Southern Poland)," IJERPH, MDPI, vol. 20(3), pages 1-22, January.
    16. Hámor-Vidó, Mária & Hámor, Tamás & Czirok, Lili, 2021. "Underground space, the legal governance of a critical resource in circular economy," Resources Policy, Elsevier, vol. 73(C).
    17. Uta Schirpke & Erich Tasser, 2021. "Trends in Ecosystem Services across Europe Due to Land-Use/Cover Changes," Sustainability, MDPI, vol. 13(13), pages 1-22, June.
    18. Yueshu Yang & Daxiang Liu & Hai Xiao & Jiangang Chen & Yu Ding & Dong Xia & Zhenyao Xia & Wennian Xu, 2019. "Evaluating the Effect of the Ecological Restoration of Quarry Slopes in Caidian District, Wuhan City," Sustainability, MDPI, vol. 11(23), pages 1-16, November.
    19. Francis Pavloudakis & Christos Roumpos & Evangelos Karlopoulos & Nikolaos Koukouzas, 2020. "Sustainable Rehabilitation of Surface Coal Mining Areas: The Case of Greek Lignite Mines," Energies, MDPI, vol. 13(15), pages 1-23, August.
    20. Köse, Murat & Kul, Ali Ayhan & Özdemir, Emrah & Gürbey, Alev Perihan & Aktaş, Nilüfer Kart, 2022. "Factors affecting utilization opportunity of wetlands and their immediate surroundings in abandoned mining sites: A case study for Istanbul," Land Use Policy, Elsevier, vol. 121(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:4:p:116-:d:343966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.