IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i9p1709-d1731262.html
   My bibliography  Save this article

Bridging Design and Climate Realities: A Meta-Synthesis of Coastal Landscape Interventions and Climate Integration

Author

Listed:
  • Bo Pang

    (Department of Landscape Architecture, University of Illinois at Urbana-Champaign, 611 Taft Drive, Champaign, IL 61820, USA)

  • Brian Deal

    (Department of Landscape Architecture, University of Illinois at Urbana-Champaign, 611 Taft Drive, Champaign, IL 61820, USA)

Abstract

This paper is aimed at landscape managers and designers. It looks at 123 real-world coastal landscape projects and organizes them into clear design categories, i.e., wetland restoration, hybrid infrastructure, or urban green spaces. We looked at how these projects were framed (whether they focused on climate adaptation, flood protection, or other goals) and how they tracked performance. We are hoping to bring some clarity to a very scattered field, helping us to see patterns in what is actually being carried out in terms of landscape interventions and increasing sea levels. We are hoping to provide a practical reference for making better, more climate-responsive design decisions. Coastal cities face escalating climate-driven threats from increasing sea levels and storm surges to urban heat islands. These threats are driving increased interest in nature-based solutions (NbSs) as green adaptive alternatives to traditional gray infrastructure. Despite an abundance of individual case studies, there have been few systematic syntheses aimed at landscape designers and managers linking design typologies, project framing, and performance outcomes. This study addresses this gap through a meta-synthesis of 123 implemented coastal landscape interventions aimed directly at landscape-oriented research and professions. Flood risk reduction was the dominant framing strategy (30.9%), followed by climate resilience (24.4%). Critical evidence gaps emerged—only 1.6% employed integrated monitoring approaches, 30.1% provided ambiguous performance documentation, and mean monitoring quality scored 0.89 out of 5.0. While 95.9% of the projects acknowledged SLR as a driver, only 4.1% explicitly integrated climate projections into design parameters. Community monitoring approaches demonstrated significantly higher ecosystem service integration, particularly cultural services (36.4% vs. 6.9%, p < 0.001 ), and enhanced monitoring quality (mean score 1.64 vs. 0.76, p < 0.001 ). Implementation barriers spanned technical constraints, institutional fragmentation, and data limitations, each affecting 20.3% of projects. Geographic analysis revealed evidence generation inequities, with systematic underrepresentation of high-risk regions (Africa: 4.1%; Latin America: 2.4%) versus concentration in well-resourced areas (North America: 27.6%; Europe: 17.1%).

Suggested Citation

  • Bo Pang & Brian Deal, 2025. "Bridging Design and Climate Realities: A Meta-Synthesis of Coastal Landscape Interventions and Climate Integration," Land, MDPI, vol. 14(9), pages 1-26, August.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:9:p:1709-:d:1731262
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/9/1709/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/9/1709/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Siddharth Narayan & Michael W Beck & Borja G Reguero & Iñigo J Losada & Bregje van Wesenbeeck & Nigel Pontee & James N Sanchirico & Jane Carter Ingram & Glenn-Marie Lange & Kelly A Burks-Copes, 2016. "The Effectiveness, Costs and Coastal Protection Benefits of Natural and Nature-Based Defences," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-17, May.
    2. Stijn Temmerman & Patrick Meire & Tjeerd J. Bouma & Peter M. J. Herman & Tom Ysebaert & Huib J. De Vriend, 2013. "Ecosystem-based coastal defence in the face of global change," Nature, Nature, vol. 504(7478), pages 79-83, December.
    3. Raymond, Christopher M. & Frantzeskaki, Niki & Kabisch, Nadja & Berry, Pam & Breil, Margaretha & Nita, Mihai Razvan & Geneletti, Davide & Calfapietra, Carlo, 2017. "A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas," Environmental Science & Policy, Elsevier, vol. 77(C), pages 15-24.
    4. Borja G Reguero & Michael W Beck & David N Bresch & Juliano Calil & Imen Meliane, 2018. "Comparing the cost effectiveness of nature-based and coastal adaptation: A case study from the Gulf Coast of the United States," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-24, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reguero, Borja G. & Beck, Michael W. & Schmid, David & Stadtmüller, Daniel & Raepple, Justus & Schüssele, Stefan & Pfliegner, Kerstin, 2020. "Financing coastal resilience by combining nature-based risk reduction with insurance," Ecological Economics, Elsevier, vol. 169(C).
    2. Denise E. DeLorme & Sonia H. Stephens & Renee C. Collini, 2022. "Coastal hazard mitigation considerations: perspectives from northern Gulf of Mexico coastal professionals and decision-makers," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 12(4), pages 669-681, December.
    3. Buenau, K.E. & Sather, N.K. & Arkema, K.K., 2025. "A marine energy and ecosystem service framework for coastal communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
    4. Mutlu, Asli & Roy, Debraj & Filatova, Tatiana, 2023. "Capitalized value of evolving flood risks discount and nature-based solution premiums on property prices," Ecological Economics, Elsevier, vol. 205(C).
    5. Lam Thi Mai Huynh & Jie Su & Quanli Wang & Lindsay C. Stringer & Adam D. Switzer & Alexandros Gasparatos, 2024. "Meta-analysis indicates better climate adaptation and mitigation performance of hybrid engineering-natural coastal defence measures," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Takahiro Tsuge & Yasushi Shoji & Koichi Kuriyama & Ayumi Onuma, 2022. "Using a Choice Experiment to Understand Preferences for Disaster Risk Reduction with Uncertainty: A Case Study in Japan," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
    7. Strain, E.M.A. & Kompas, T. & Boxshall, A. & Kelvin, J. & Swearer, S. & Morris, R.L., 2022. "Assessing the coastal protection services of natural mangrove forests and artificial rock revetments," Ecosystem Services, Elsevier, vol. 55(C).
    8. Maria Fabrizia Clemente & Valeria D’Ambrosio & Ferdinando Di Martino & Vittorio Miraglia, 2023. "Quantify the Contribution of Nature-Based Solutions in Reducing the Impacts of Hydro-Meteorological Hazards in the Urban Environment: A Case Study in Naples, Italy," Land, MDPI, vol. 12(3), pages 1-20, February.
    9. Priscila Celebrini de Oliveira Campos & Tainá da Silva Rocha Paz & Letícia Lenz & Yangzi Qiu & Camila Nascimento Alves & Ana Paula Roem Simoni & José Carlos Cesar Amorim & Gilson Brito Alves Lima & Ma, 2020. "Multi-Criteria Decision Method for Sustainable Watercourse Management in Urban Areas," Sustainability, MDPI, vol. 12(16), pages 1-22, August.
    10. Hagedoorn, Liselotte C. & Koetse, Mark J. & van Beukering, Pieter J.H. & Brander, Luke M., 2021. "Reducing the finance gap for nature-based solutions with time contributions," Ecosystem Services, Elsevier, vol. 52(C).
    11. Steven B. Scyphers & Michael W. Beck & Kelsi L. Furman & Judy Haner & Lauren I. Josephs & Rebecca Lynskey & Andrew G. Keeler & Craig E. Landry & Sean P. Powers & Bret M. Webb & Jonathan H. Grabowski, 2019. "A Waterfront View of Coastal Hazards: Contextualizing Relationships among Geographic Exposure, Shoreline Type, and Hazard Concerns among Coastal Residents," Sustainability, MDPI, vol. 11(23), pages 1-11, November.
    12. H. M. Tuihedur Rahman & Kate Sherren & Danika van Proosdij, 2019. "Institutional Innovation for Nature-Based Coastal Adaptation: Lessons from Salt Marsh Restoration in Nova Scotia, Canada," Sustainability, MDPI, vol. 11(23), pages 1-26, November.
    13. Hai-Ying Liu & Marion Jay & Xianwen Chen, 2021. "The Role of Nature-Based Solutions for Improving Environmental Quality, Health and Well-Being," Sustainability, MDPI, vol. 13(19), pages 1-56, October.
    14. Julie Rozenberg & Marianne Fay, 2019. "Beyond the Gap," World Bank Publications - Books, The World Bank Group, number 31291.
    15. Octavio Pérez-Maqueo & M. Luisa Martínez & Flor C. Sánchez-Barradas & Melanie Kolb, 2018. "Assessing Nature-Based Coastal Protection against Disasters Derived from Extreme Hydrometeorological Events in Mexico," Sustainability, MDPI, vol. 10(5), pages 1-17, April.
    16. Elena Di Pirro & Peter Roebeling & Lorenzo Sallustio & Marco Marchetti & Bruno Lasserre, 2023. "Cost-Effectiveness of Nature-Based Solutions under Different Implementation Scenarios: A National Perspective for Italian Urban Areas," Land, MDPI, vol. 12(3), pages 1-19, March.
    17. Cousins, Joshua J., 2021. "Justice in nature-based solutions: Research and pathways," Ecological Economics, Elsevier, vol. 180(C).
    18. Adloff, Susann & Rehdanz, Katrin, 2023. "Wait and see? Public preferences for the temporal effectiveness of coastal protection," Ecological Economics, Elsevier, vol. 204(PA).
    19. Remme, Roy P. & Meacham, Megan & Pellowe, Kara E. & Andersson, Erik & Guerry, Anne D. & Janke, Benjamin & Liu, Lingling & Lonsdorf, Eric & Li, Meng & Mao, Yuanyuan & Nootenboom, Christopher & Wu, Tong, 2024. "Aligning nature-based solutions with ecosystem services in the urban century," Ecosystem Services, Elsevier, vol. 66(C).
    20. repec:plo:pone00:0211312 is not listed on IDEAS
    21. Serhan Cevik, 2024. "Climate change and energy security: the dilemma or opportunity of the century?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 26(3), pages 653-672, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:9:p:1709-:d:1731262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.