IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i4p853-d1634059.html
   My bibliography  Save this article

Response of Soil Temperature to Soil Moisture Content and Meteorological Elements with Gravel-Sand Mulching

Author

Listed:
  • Gengzhe Han

    (School of Civil and Water Conservancy Engineering, Ningxia University, Yinchuan 750021, China)

  • Junli Tan

    (School of Civil and Water Conservancy Engineering, Ningxia University, Yinchuan 750021, China)

  • Xina Wang

    (College of Agriculture, Ningxia University, Yinchuan 750021, China)

  • Hao Li

    (School of Civil and Water Conservancy Engineering, Ningxia University, Yinchuan 750021, China)

  • Qian Shang

    (School of Civil and Water Conservancy Engineering, Ningxia University, Yinchuan 750021, China)

  • Juncang Tian

    (School of Civil and Water Conservancy Engineering, Ningxia University, Yinchuan 750021, China)

Abstract

Soil gravel–sand mulching—an ancient farming method in arid areas—is used to cope with drought by conserving water and improving soil temperature, the latter being a key factor affecting agricultural production. The objective of this study is to ascertain the influence of soil water content and meteorological elements on soil temperature under gravel–sand mulching conditions. Field experiments, analysis of variance, Pearson correlation analysis, and other statistical methods were used to study the effects of varying soil moisture content on soil temperature at 0–25 cm depth under gravel–sand mulching conditions, and to analyze the relationships between meteorological factors and soil temperature during the temperature measurement period. In the 0–20 cm soil layer, the soil accumulated temperature decreased with an increase in soil moisture content, while the change rate of temperature increased. In the test range, the temperature conductivity of 10–15 cm soil increased with the increase in soil water content in the 20–40 cm layer. Under gravel–sand mulching conditions, soil temperature was not only related to air temperature but also positively related to water vapor pressure. When the soil moisture content was high, the soil temperature decreased with an increase in atmospheric evaporation capacity. When the soil moisture conditions were poor, the meteorological factors had an effect of increasing the soil temperature. Under gravel–sand mulching conditions, soil moisture content exhibits a significant negative correlation with both soil temperature and accumulated temperature. Higher soil moisture enhances vertical heat conduction, facilitating heat transfer from the surface to deeper layers. The 10–15 cm soil layer acts as a thermal buffer zone, regulating temperature fluctuations and mitigating extreme heat variations. However, higher air temperature leads to greater heat accumulation, while, in wetter soils, enhanced heat conduction and evaporative cooling lower soil temperature.

Suggested Citation

  • Gengzhe Han & Junli Tan & Xina Wang & Hao Li & Qian Shang & Juncang Tian, 2025. "Response of Soil Temperature to Soil Moisture Content and Meteorological Elements with Gravel-Sand Mulching," Land, MDPI, vol. 14(4), pages 1-17, April.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:4:p:853-:d:1634059
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/4/853/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/4/853/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cassel Sharmasarkar, F. & Sharmasarkar, S. & Miller, S. D. & Vance, G. F. & Zhang, R., 2001. "Assessment of drip and flood irrigation on water and fertilizer use efficiencies for sugarbeets," Agricultural Water Management, Elsevier, vol. 46(3), pages 241-251, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Çolak, Yeşim Bozkurt & Yazar, Attila & Gönen, Engin & Eroğlu, E. Çağlar, 2018. "Yield and quality response of surface and subsurface drip-irrigated eggplant and comparison of net returns," Agricultural Water Management, Elsevier, vol. 206(C), pages 165-175.
    2. Li, Jiusheng & Zhang, Jianjun & Rao, Minjie, 2004. "Wetting patterns and nitrogen distributions as affected by fertigation strategies from a surface point source," Agricultural Water Management, Elsevier, vol. 67(2), pages 89-104, June.
    3. Slamini, Maryam & Sbaa, Mohamed & Arabi, Mourad & Darmous, Ahmed, 2022. "Review on Partial Root-zone Drying irrigation: Impact on crop yield, soil and water pollution," Agricultural Water Management, Elsevier, vol. 271(C).
    4. Wei, Qi & Wei, Qi & Xu, Junzeng & Liu, Yuzhou & Wang, Dong & Chen, Shengyu & Qian, Wenhao & He, Min & Chen, Peng & Zhou, Xuanying & Qi, Zhiming, 2024. "Nitrogen losses from soil as affected by water and fertilizer management under drip irrigation: Development, hotspots and future perspectives," Agricultural Water Management, Elsevier, vol. 296(C).
    5. Hassanli, Ali Morad & Ahmadirad, Shahram & Beecham, Simon, 2010. "Evaluation of the influence of irrigation methods and water quality on sugar beet yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 97(2), pages 357-362, February.
    6. Sebastian, Bárbara & Baeza, Pilar & Santesteban, Luis G. & Sanchez de Miguel, Patricia & De La Fuente, Mario & Lissarrague, José R., 2015. "Response of grapevine cv. Syrah to irrigation frequency and water distribution pattern in a clay soil," Agricultural Water Management, Elsevier, vol. 148(C), pages 269-279.
    7. Qin, Shujing & Li, Sien & Kang, Shaozhong & Du, Taisheng & Tong, Ling & Ding, Risheng, 2016. "Can the drip irrigation under film mulch reduce crop evapotranspiration and save water under the sufficient irrigation condition?," Agricultural Water Management, Elsevier, vol. 177(C), pages 128-137.
    8. Kiymaz, Sultan & Ertek, Ahmet, 2015. "Water use and yield of sugar beet (Beta vulgaris L.) under drip irrigation at different water regimes," Agricultural Water Management, Elsevier, vol. 158(C), pages 225-234.
    9. Liang, Hao & Lv, Haofeng & Batchelor, William D. & Lian, Xiaojuan & Wang, Zhengxiang & Lin, Shan & Hu, Kelin, 2020. "Simulating nitrate and DON leaching to optimize water and N management practices for greenhouse vegetable production systems," Agricultural Water Management, Elsevier, vol. 241(C).
    10. Li, Jungai & Liu, Hongbin & Wang, Hongyuan & Luo, Jiafa & Zhang, Xuejun & Liu, Zhaohui & Zhang, Yitao & Zhai, Limei & Lei, Qiuliang & Ren, Tianzhi & Li, Yan & Bashir, Muhammad Amjad, 2018. "Managing irrigation and fertilization for the sustainable cultivation of greenhouse vegetables," Agricultural Water Management, Elsevier, vol. 210(C), pages 354-363.
    11. Zhou, Hong & Zhao, Wen zhi, 2019. "Modeling soil water balance and irrigation strategies in a flood-irrigated wheat-maize rotation system. A case in dry climate, China," Agricultural Water Management, Elsevier, vol. 221(C), pages 286-302.
    12. Sun, Yuan & Zhang, Jing & Wang, Hongyuan & Wang, Ligang & Li, Hu, 2019. "Identifying optimal water and nitrogen inputs for high efficiency and low environment impacts of a greenhouse summer cucumber with a model method," Agricultural Water Management, Elsevier, vol. 212(C), pages 23-34.
    13. Kiymaz, Sultan & Ertek, Ahmet, 2015. "Yield and quality of sugar beet (Beta vulgaris L.) at different water and nitrogen levels under the climatic conditions of Kırsehir, Turkey," Agricultural Water Management, Elsevier, vol. 158(C), pages 156-165.
    14. Xiuhua Song & Hong Li & Chao Chen & Huameng Xia & Zhiyang Zhang & Pan Tang, 2022. "Design and Experimental Testing of a Control System for a Solid-Fertilizer-Dissolving Device Based on Fuzzy PID," Agriculture, MDPI, vol. 12(9), pages 1-15, September.
    15. Indranil Samui & Milan Skalicky & Sukamal Sarkar & Koushik Brahmachari & Sayan Sau & Krishnendu Ray & Akbar Hossain & Argha Ghosh & Manoj Kumar Nanda & Richard W. Bell & Mohammed Mainuddin & Marian Br, 2020. "Yield Response, Nutritional Quality and Water Productivity of Tomato ( Solanum lycopersicum L.) are Influenced by Drip Irrigation and Straw Mulch in the Coastal Saline Ecosystem of Ganges Delta, India," Sustainability, MDPI, vol. 12(17), pages 1-21, August.
    16. Liao, Renkuan & Wu, Wenyong & Hu, Yaqi & Huang, Qiannan & Yan, Hua, 2019. "Quantifying moisture availability in soil profiles of cherry orchards under different irrigation regimes," Agricultural Water Management, Elsevier, vol. 225(C).
    17. Wang, Feng-Xin & Kang, Yaohu & Liu, Shi-Ping, 2006. "Effects of drip irrigation frequency on soil wetting pattern and potato growth in North China Plain," Agricultural Water Management, Elsevier, vol. 79(3), pages 248-264, February.
    18. Li, Jiusheng & Li, Bei & Rao, Minjie, 2005. "Spatial and temporal distributions of nitrogen and crop yield as affected by nonuniformity of sprinkler fertigation," Agricultural Water Management, Elsevier, vol. 76(3), pages 160-180, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:4:p:853-:d:1634059. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.