IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i4p834-d1632535.html
   My bibliography  Save this article

Impacts of Water and Sediment Fluxes into the Sea on Spatiotemporal Evolution of Coastal Zone in the Yellow River Delta

Author

Listed:
  • Bowei Yu

    (State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China)

  • Chunsheng Wu

    (Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Zhonghe Zhao

    (Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

Abstract

Water and sediment fluxes into the sea are the basis for the stability of the ecological pattern of the Yellow River Delta (YRD). As a Ramsar wetland of international importance, the YRD is facing the huge ecological risk of land degradation due to changes in water–sediment fluxes into the sea. In this study, we investigated the spatiotemporal dynamics of the coastline and subaerial delta using annual remote sensing images and revealed more detailed and clear relationships between water–sediment fluxes into the sea and the YRD evolution, including the whole delta and its subregions (e.g., the Qingshuigou and Diaokou regions) from 1976 to 2022. Our results showed that the mean yearly water and sediment fluxes during the study period amounted to 210.50 × 10 8 m 3 yr −1 and 367.81 Mt yr −1 , respectively. There was an abrupt change in water and sediment fluxes into the sea in 1999, and both decreased significantly from 1976 to 1999, whereas the water discharge has significantly increased and the sediment flux has stabilized since around 2000. The delta area evolutions of the whole YRD and the Qingshuigou region can be characterized by three stages: a rapid growth stage (1976–1993), a rapid retreat stage (1993–2002), and a gradual recovery stage (2002–2022). The area in the Diaokou region displayed a continuous decreasing trend from 1976 to 2022. The regression analysis indicated that the relationships between cumulative sediment flux and cumulative land accretion area presented spatiotemporal differentiation. The cumulative land accretion area increased with the cumulative sediment flux in the whole YRD and its subregions from 1976 to 1992, decreased with the cumulative sediment flux in the YRD from 1993 to 2002, except for the northeast of Qingshuigou, and then expanded with the cumulative sediment flux in the YRD from 2003 to 2022, except for the southeast of Qingshuigou.

Suggested Citation

  • Bowei Yu & Chunsheng Wu & Zhonghe Zhao, 2025. "Impacts of Water and Sediment Fluxes into the Sea on Spatiotemporal Evolution of Coastal Zone in the Yellow River Delta," Land, MDPI, vol. 14(4), pages 1-18, April.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:4:p:834-:d:1632535
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/4/834/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/4/834/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mark Schuerch & Tom Spencer & Stijn Temmerman & Matthew L. Kirwan & Claudia Wolff & Daniel Lincke & Chris J. McOwen & Mark D. Pickering & Ruth Reef & Athanasios T. Vafeidis & Jochen Hinkel & Robert J., 2018. "Future response of global coastal wetlands to sea-level rise," Nature, Nature, vol. 561(7722), pages 231-234, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:ags:aaea22:335970 is not listed on IDEAS
    2. Danghan Xie & Christian Schwarz & Maarten G. Kleinhans & Karin R. Bryan & Giovanni Coco & Stephen Hunt & Barend van Maanen, 2023. "Mangrove removal exacerbates estuarine infilling through landscape-scale bio-morphodynamic feedbacks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Guandong Li & Torbjörn E. Törnqvist & Sönke Dangendorf, 2024. "Real-world time-travel experiment shows ecosystem collapse due to anthropogenic climate change," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Sèna Donalde Dolorès Marguerite Deguenon & Castro Gbêmêmali Hounmenou & Richard Adade & Oscar Teka & Ismaila Imorou Toko & Denis Worlanyo Aheto & Brice Sinsin, 2023. "Simulation of the Impacts of Sea-Level Rise on Coastal Ecosystems in Benin Using a Combined Approach of Machine Learning and the Sea Level Affecting Marshes Model," Sustainability, MDPI, vol. 15(22), pages 1-17, November.
    5. Tracy Elsey-Quirk & Austin Lynn & Michael Derek Jacobs & Rodrigo Diaz & James T. Cronin & Lixia Wang & Haosheng Huang & Dubravko Justic, 2024. "Vegetation dieback in the Mississippi River Delta triggered by acute drought and chronic relative sea-level rise," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Hagger, Valerie & Waltham, Nathan J. & Lovelock, Catherine E., 2022. "Opportunities for coastal wetland restoration for blue carbon with co-benefits for biodiversity, coastal fisheries, and water quality," Ecosystem Services, Elsevier, vol. 55(C).
    7. Fan Xu & Zeng Zhou & Sergio Fagherazzi & Andrea D’Alpaos & Ian Townend & Kun Zhao & Weiming Xie & Leicheng Guo & Xianye Wang & Zhong Peng & Zhicheng Yang & Chunpeng Chen & Guangcheng Cheng & Yuan Xu &, 2024. "Anomalous scaling of branching tidal networks in global coastal wetlands and mudflats," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Kevin C. Hanegan & Duncan M. FitzGerald & Ioannis Y. Georgiou & Zoe J. Hughes, 2023. "Long-term sea level rise modeling of a basin-tidal inlet system reveals sediment sinks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Xin Jing & Yuefei Zhuo & Zhongguo Xu & Yang Chen & Guan Li & Xueqi Wang, 2023. "Coastal Wetland Restoration Strategies Based on Ecosystem Service Changes: A Case Study of the South Bank of Hangzhou Bay," Land, MDPI, vol. 12(5), pages 1-20, May.
    10. Bukvic, A. & Mitchell, A. & Shao, Y. & Irish, J.L., 2023. "Spatiotemporal implications of flooding on relocation risk in rural and urban coastal municipalities," Land Use Policy, Elsevier, vol. 132(C).
    11. Xuejiao Hou & Danghan Xie & Lian Feng & Fang Shen & Jaap H. Nienhuis, 2024. "Sustained increase in suspended sediments near global river deltas over the past two decades," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Suhaib A. Bandh & Fayaz A. Malla & Irteza Qayoom & Haika Mohi-Ud-Din & Aqsa Khursheed Butt & Aashia Altaf & Shahid A. Wani & Richard Betts & Thanh Hai Truong & Nguyen Dang Khoa Pham & Dao Nam Cao & Sh, 2023. "Importance of Blue Carbon in Mitigating Climate Change and Plastic/Microplastic Pollution and Promoting Circular Economy," Sustainability, MDPI, vol. 15(3), pages 1-29, February.
    13. Shasha Song & Isaac R. Santos & Huaming Yu & Faming Wang & William C. Burnett & Thomas S. Bianchi & Junyu Dong & Ergang Lian & Bin Zhao & Lawrence Mayer & Qingzhen Yao & Zhigang Yu & Bochao Xu, 2022. "A global assessment of the mixed layer in coastal sediments and implications for carbon storage," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Meixler, Marcia S. & Kaunzinger, Christina M.K. & Epiphan, Jean N. & Handel, Steven N., 2020. "Identifying opportunities for local assisted expansion of coastal upland vegetation in an urban estuary," Ecological Modelling, Elsevier, vol. 438(C).
    15. Aijuan Zhang & Wenlong Lv & Qiang Shu & Zhiling Chen & Yifan Du & Hui Ye & Linlu Xu & Shengzhi Liu, 2024. "Distribution Characteristics and Main Influencing Factors of Organic Carbon in Sediments of Spartina Alterniflora Wetlands along the Northern Jiangsu Coast, China," Land, MDPI, vol. 13(6), pages 1-16, May.
    16. Vincent T. M. Zelst & Jasper T. Dijkstra & Bregje K. Wesenbeeck & Dirk Eilander & Edward P. Morris & Hessel C. Winsemius & Philip J. Ward & Mindert B. Vries, 2021. "Cutting the costs of coastal protection by integrating vegetation in flood defences," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    17. Marc J. S. Hensel & Brian R. Silliman & Johan Koppel & Enie Hensel & Sean J. Sharp & Sinead M. Crotty & Jarrett E. K. Byrnes, 2021. "A large invasive consumer reduces coastal ecosystem resilience by disabling positive species interactions," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    18. Yaoshen Fan & Shoubing Yu & Jinghao Wang & Peng Li & Shenliang Chen & Hongyu Ji & Ping Li & Shentang Dou, 2022. "Changes of Inundation Frequency in the Yellow River Delta and Its Response to Wetland Vegetation," Land, MDPI, vol. 11(10), pages 1-14, September.
    19. De la Cruz, Andrés & Numa, Catherine, 2024. "Habitat availability decline for waterbirds in a sensitive wetland: Climate change impact on the Ebro Delta," Ecological Modelling, Elsevier, vol. 498(C).
    20. Jiayi Fang & Robert J. Nicholls & Sally Brown & Daniel Lincke & Jochen Hinkel & Athanasios T. Vafeidis & Shiqiang Du & Qing Zhao & Min Liu & Peijun Shi, 2022. "Benefits of subsidence control for coastal flooding in China," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    21. Weisong Li & Jiahui Wu & Liyan Yang & Wanxu Chen & Xinghua Cui & Mingyu Lin, 2024. "Spatial Variations in Relationships between Urbanization and Carbon Emissions in Chinese Urban Agglomerations," Land, MDPI, vol. 13(8), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:4:p:834-:d:1632535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.