IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i3p649-d1615368.html
   My bibliography  Save this article

Multi-Source Attention U-Net: A Novel Deep Learning Framework for the Land Use and Soil Salinization Classification of Keriya Oasis in China with RADARSAT-2 and Landsat-8 Data

Author

Listed:
  • Yang Xiang

    (College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China
    Xinjiang Field Scientific Observation and Research Station for the Oasisization Process in the Hinterland of the Taklamakan Desert, Yutian 848400, China)

  • Ilyas Nurmemet

    (College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China
    Xinjiang Field Scientific Observation and Research Station for the Oasisization Process in the Hinterland of the Taklamakan Desert, Yutian 848400, China)

  • Xiaobo Lv

    (College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China
    Xinjiang Field Scientific Observation and Research Station for the Oasisization Process in the Hinterland of the Taklamakan Desert, Yutian 848400, China)

  • Xinru Yu

    (College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China
    Xinjiang Field Scientific Observation and Research Station for the Oasisization Process in the Hinterland of the Taklamakan Desert, Yutian 848400, China)

  • Aoxiang Gu

    (College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China
    Xinjiang Field Scientific Observation and Research Station for the Oasisization Process in the Hinterland of the Taklamakan Desert, Yutian 848400, China)

  • Aihepa Aihaiti

    (College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China
    Xinjiang Field Scientific Observation and Research Station for the Oasisization Process in the Hinterland of the Taklamakan Desert, Yutian 848400, China)

  • Shiqin Li

    (College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China
    Xinjiang Field Scientific Observation and Research Station for the Oasisization Process in the Hinterland of the Taklamakan Desert, Yutian 848400, China)

Abstract

Soil salinization significantly impacts global agricultural productivity, contributing to desertification and land degradation; thus, rapid regional monitoring of soil salinization is crucial for agricultural production and sustainable management. With advancements in artificial intelligence, the efficiency and precision of deep learning classification models applied to remote sensing imagery have been demonstrated. Given the limited feature learning capability of traditional machine learning, this study introduces an innovative deep fusion U-Net model called MSA-U-Net (Multi-Source Attention U-Net) incorporating a Convolutional Block Attention Module (CBAM) within the skip connections to improve feature extraction and fusion. A salinized soil classification dataset was developed by combining spectral indices obtained from Landsat-8 Operational Land Imager (OLI) data and polarimetric scattering features extracted from RADARSAT-2 data using polarization target decomposition. To select optimal features, the Boruta algorithm was employed to rank features, selecting the top eight features to construct a multispectral (MS) dataset, a synthetic aperture radar (SAR) dataset, and an MS + SAR dataset. Furthermore, Support Vector Machine (SVM), Random Forest (RF), K-Nearest Neighbor (KNN), and deep learning methods including U-Net and MSA-U-Net were employed to identify the different degrees of salinized soil. The results indicated that the MS + SAR dataset outperformed the MS dataset, with the inclusion of the SAR band resulting in an Overall Accuracy (OA) increase of 1.94–7.77%. Moreover, the MS + SAR MSA-U-Net, in comparison to traditional machine learning methods and the baseline model, improved the OA and Kappa coefficient by 8.24% to 12.55% and 0.08 to 0.15, respectively. The results demonstrate that the MSA-U-Net outperformed traditional models, indicating the potential of integrating multi-source data with deep learning techniques for monitoring soil salinity.

Suggested Citation

  • Yang Xiang & Ilyas Nurmemet & Xiaobo Lv & Xinru Yu & Aoxiang Gu & Aihepa Aihaiti & Shiqin Li, 2025. "Multi-Source Attention U-Net: A Novel Deep Learning Framework for the Land Use and Soil Salinization Classification of Keriya Oasis in China with RADARSAT-2 and Landsat-8 Data," Land, MDPI, vol. 14(3), pages 1-26, March.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:3:p:649-:d:1615368
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/3/649/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/3/649/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khan, Nasir M. & Rastoskuev, Victor V. & Sato, Y. & Shiozawa, S., 2005. "Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 96-109, August.
    2. Jing Zhao & Ilyas Nurmemet & Nuerbiye Muhetaer & Sentian Xiao & Adilai Abulaiti, 2023. "Monitoring Soil Salinity Using Machine Learning and the Polarimetric Scattering Features of PALSAR-2 Data," Sustainability, MDPI, vol. 15(9), pages 1-19, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shiqin Li & Ilyas Nurmemet & Jumeniyaz Seydehmet & Xiaobo Lv & Yilizhati Aili & Xinru Yu, 2024. "Spatiotemporal Dynamics and Driving Factors of Soil Salinization: A Case Study of the Yutian Oasis, Xinjiang, China," Land, MDPI, vol. 13(11), pages 1-23, November.
    2. Tong Su & Xinjun Wang & Songrui Ning & Jiandong Sheng & Pingan Jiang & Shenghan Gao & Qiulan Yang & Zhixin Zhou & Hanyu Cui & Zhilin Li, 2024. "Enhancing Soil Salinity Evaluation Accuracy in Arid Regions: An Integrated Spatiotemporal Data Fusion and AI Model Approach for Arable Lands," Land, MDPI, vol. 13(11), pages 1-20, November.
    3. Lao, Congcong & Yu, Xiayang & Zhan, Lucheng & Xin, Pei, 2024. "Monitoring soil salinity in coastal wetlands with Sentinel-2 MSI data: Combining fractional-order derivatives and stacked machine learning models," Agricultural Water Management, Elsevier, vol. 306(C).
    4. Romeu Gerardo & Isabel P. de Lima, 2022. "Sentinel-2 Satellite Imagery-Based Assessment of Soil Salinity in Irrigated Rice Fields in Portugal," Agriculture, MDPI, vol. 12(9), pages 1-20, September.
    5. Maxime Dumont & Guilhem Brunel & Paul Tresson & Jérôme Nespoulous & Hassan Boukcim & Marc Ducousso & Stéphane Boivin & Olivier Taugourdeau & Bruno Tisseyre, 2024. "Operational sampling designs for poorly accessible areas based on a multi-objective optimization method," Post-Print hal-04566087, HAL.
    6. Weitao Lv & Xiasong Hu & Xilai Li & Jimei Zhao & Changyi Liu & Shuaifei Li & Guorong Li & Haili Zhu, 2024. "Multi-Model Comprehensive Inversion of Surface Soil Moisture from Landsat Images Based on Machine Learning Algorithms," Sustainability, MDPI, vol. 16(9), pages 1-21, April.
    7. Min Ma & Yi Hao & Qingchun Huang & Yongxin Liu & Liancun Xiu & Qi Gao, 2024. "Soil Salinity Estimation by 3D Spectral Space Optimization and Deep Soil Investigation in the Songnen Plain, Northeast China," Sustainability, MDPI, vol. 16(5), pages 1-26, March.
    8. Mohamed Elhedi Gharsallah & Hamouda Aichi & Talel Stambouli & Zouhair Ben Rabah & Habib Ben Hassine, 2022. "Assessment and mapping of soil salinity using electromagnetic induction and Landsat 8 OLI remote sensing data in an irrigated olive orchard under semi-arid conditions," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 17(1), pages 15-28.
    9. Zixuan Zhang & Beibei Niu & Xinju Li & Xingjian Kang & Zhenqi Hu, 2022. "Estimation and Dynamic Analysis of Soil Salinity Based on UAV and Sentinel-2A Multispectral Imagery in the Coastal Area, China," Land, MDPI, vol. 11(12), pages 1-21, December.
    10. Jiawen Hou & Mao Ye, 2022. "Effects of Dynamic Changes of Soil Moisture and Salinity on Plant Community in the Bosten Lake Basin," Sustainability, MDPI, vol. 14(21), pages 1-13, October.
    11. Hesham M. Aboelsoud & Mohamed A. E. AbdelRahman & Ahmed M. S. Kheir & Mona S. M. Eid & Khalil A. Ammar & Tamer H. Khalifa & Antonio Scopa, 2022. "Quantitative Estimation of Saline-Soil Amelioration Using Remote-Sensing Indices in Arid Land for Better Management," Land, MDPI, vol. 11(7), pages 1-19, July.
    12. Jiahao Zhao & Yanmin Fan & Junwei Xuan & Mingjie Shi & Dejun Wang & Hongqi Wu & Yanan Bi & Yunhao Li, 2025. "Monitoring of Soil Salinization and Analysis of Driving Factors in the Oasis Zone of South Xinjiang," Land, MDPI, vol. 14(4), pages 1-23, April.
    13. Ramos, Tiago B. & Castanheira, Nádia & Oliveira, Ana R. & Paz, Ana Marta & Darouich, Hanaa & Simionesei, Lucian & Farzamian, Mohammad & Gonçalves, Maria C., 2020. "Soil salinity assessment using vegetation indices derived from Sentinel-2 multispectral data. application to Lezíria Grande, Portugal," Agricultural Water Management, Elsevier, vol. 241(C).
    14. Hamideh Nouri & Sattar Chavoshi Borujeni & Sina Alaghmand & Sharolyn J. Anderson & Paul C. Sutton & Somayeh Parvazian & Simon Beecham, 2018. "Soil Salinity Mapping of Urban Greenery Using Remote Sensing and Proximal Sensing Techniques; The Case of Veale Gardens within the Adelaide Parklands," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    15. Billal Hossen & Helmut Yabar & Md Jamal Faruque, 2022. "Exploring the Potential of Soil Salinity Assessment through Remote Sensing and GIS: Case Study in the Coastal Rural Areas of Bangladesh," Land, MDPI, vol. 11(10), pages 1-18, October.
    16. Yu Fu & Pengyu Wang & Wengeng Cao & Shiqian Fu & Juanjuan Zhang & Xiangzhi Li & Jiju Guo & Zhiquan Huang & Xidong Chen, 2024. "Long-Term Assessment of Soil Salinization Patterns in the Yellow River Delta Using Landsat Imagery from 2003 to 2021," Land, MDPI, vol. 14(1), pages 1-17, December.
    17. Shuai Li & Pu Guo & Fei Sun & Jinlei Zhu & Xiaoming Cao & Xue Dong & Qi Lu, 2024. "Mapping Dryland Ecosystems Using Google Earth Engine and Random Forest: A Case Study of an Ecologically Critical Area in Northern China," Land, MDPI, vol. 13(6), pages 1-20, June.
    18. Sheshu Zhang & Jun Zhao & Jianxia Yang & Jinfeng Xie & Ziyun Sun, 2024. "Feature Selection and Regression Models for Multisource Data-Based Soil Salinity Prediction: A Case Study of Minqin Oasis in Arid China," Land, MDPI, vol. 13(6), pages 1-21, June.
    19. Yasin ul Haq & Muhammad Shahbaz & H. M. Shahzad Asif & Ali Al-Laith & Wesam H. Alsabban, 2023. "Spatial Mapping of Soil Salinity Using Machine Learning and Remote Sensing in Kot Addu, Pakistan," Sustainability, MDPI, vol. 15(17), pages 1-19, August.
    20. repec:caa:jnlswr:v:preprint:id:5-2024-swr is not listed on IDEAS
    21. Hui Deng & Wenjiang Zhang & Xiaoqian Zheng & Houxi Zhang, 2024. "Crop Classification Combining Object-Oriented Method and Random Forest Model Using Unmanned Aerial Vehicle (UAV) Multispectral Image," Agriculture, MDPI, vol. 14(4), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:3:p:649-:d:1615368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.