IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i12p2126-d1539104.html
   My bibliography  Save this article

Forecasting of Grasslands Distribution on Mount Zireia Using Ecological Niche Modeling and Future Climatic Scenarios

Author

Listed:
  • Maria Karatassiou

    (Laboratory of Rangeland Ecology, School of Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 286, 54124 Thessaloniki, Greece)

  • Afroditi Stergiou

    (Laboratory of Rangeland Ecology, School of Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 286, 54124 Thessaloniki, Greece)

  • Dimitrios Chouvardas

    (Laboratory of Rangeland Ecology, School of Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 286, 54124 Thessaloniki, Greece)

  • Mohamed Tarhouni

    (Pastoral Ecosystems Spontaneous Plants and Associated Microorganisms Laboratory, Arid Regions Institute, University of Gabes, Route of Djerba km 22.5, Medenine 4100, Tunisia)

  • Athanasios Ragkos

    (Agricultural Economics Research Institute, Hellenic Agricultural Organization—DIMITRA, Kourtidou 56–58, 11145 Athens, Greece)

Abstract

Grassland ecosystems cover a high percentage of the terrestrial habitats of Earth and support the livelihood and well-being of at least one-fifth of the human population. Climate change and human activities are causing increasing pressure on arid and semi-arid regions. Land use/cover change significantly affects the function and distribution of grasslands, showing diverse patterns across space and time. The study investigated the spatial distribution of grasslands of Mount Zireia (Peloponnesus, Greece) using MaxEnt modeling based on CMIP6 models (CNRM-CM6 and CCMCC-ESM2) and two Shared Socioeconomic Pathways (SSP 245 and SSP 585) covering the period of 1970–2100. The results from the current (1970–2000) and several future periods (2020–2100) revealed that the MaxEnt model provided highly accurate forecasts. The grassland distribution was found to be significantly impacted by climate change, with impacts varying by period, scenario, and climate model used. In particular, the CNRM-CM6-1 model forecasts a substantial increase in grasslands at higher elevations up to 2100 m asl. The research emphasizes the importance of exploring the combined impacts of climate change and grazing intensity on land use and cover changes in mountainous grasslands.

Suggested Citation

  • Maria Karatassiou & Afroditi Stergiou & Dimitrios Chouvardas & Mohamed Tarhouni & Athanasios Ragkos, 2024. "Forecasting of Grasslands Distribution on Mount Zireia Using Ecological Niche Modeling and Future Climatic Scenarios," Land, MDPI, vol. 13(12), pages 1-18, December.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:12:p:2126-:d:1539104
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/12/2126/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/12/2126/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rizwan Muhammad & Wenyin Zhang & Zaheer Abbas & Feng Guo & Luc Gwiazdzinski, 2022. "Spatiotemporal Change Analysis and Prediction of Future Land Use and Land Cover Changes Using QGIS MOLUSCE Plugin and Remote Sensing Big Data: A Case Study of Linyi, China," Land, MDPI, vol. 11(3), pages 1-24, March.
    2. Stephen Polasky & Erik Nelson & Derric Pennington & Kris Johnson, 2011. "The Impact of Land-Use Change on Ecosystem Services, Biodiversity and Returns to Landowners: A Case Study in the State of Minnesota," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(2), pages 219-242, February.
    3. A. Park Williams & Craig D. Allen & Alison K. Macalady & Daniel Griffin & Connie A. Woodhouse & David M. Meko & Thomas W. Swetnam & Sara A. Rauscher & Richard Seager & Henri D. Grissino-Mayer & Jeffre, 2013. "Temperature as a potent driver of regional forest drought stress and tree mortality," Nature Climate Change, Nature, vol. 3(3), pages 292-297, March.
    4. Paulo De Marco Júnior & Caroline Corrêa Nóbrega, 2018. "Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-25, September.
    5. Han Olff & Mark E. Ritchie & Herbert H. T. Prins, 2002. "Global environmental controls of diversity in large herbivores," Nature, Nature, vol. 415(6874), pages 901-904, February.
    6. Dimitrios Chouvardas & Maria Karatassiou & Afroditi Stergiou & Garyfallia Chrysanthopoulou, 2022. "Identifying the Spatiotemporal Transitions and Future Development of a Grazed Mediterranean Landscape of South Greece," Land, MDPI, vol. 11(12), pages 1-22, November.
    7. Diogenis A. Kiziridis & Anna Mastrogianni & Magdalini Pleniou & Elpida Karadimou & Spyros Tsiftsis & Fotios Xystrakis & Ioannis Tsiripidis, 2022. "Acceleration and Relocation of Abandonment in a Mediterranean Mountainous Landscape: Drivers, Consequences, and Management Implications," Land, MDPI, vol. 11(3), pages 1-23, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konstantinos Chontos & Ioannis Tsiripidis, 2023. "Open Habitats under Threat in Mountainous, Mediterranean Landscapes: Land Abandonment Consequences in the Vegetation Cover of the Thessalian Part of Mt Agrafa (Central Greece)," Land, MDPI, vol. 12(4), pages 1-22, April.
    2. SrinivasaPerumal Padma & Sivakumar Vidhya Lakshmi & Ramaiah Prakash & Sundaresan Srividhya & Aburpa Avanachari Sivakumar & Nagarajan Divyah & Cristian Canales & Erick I. Saavedra Flores, 2022. "Simulation of Land Use/Land Cover Dynamics Using Google Earth Data and QGIS: A Case Study on Outer Ring Road, Southern India," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    3. Ning Chen & Yifei Zhang & Fenghui Yuan & Changchun Song & Mingjie Xu & Qingwei Wang & Guangyou Hao & Tao Bao & Yunjiang Zuo & Jianzhao Liu & Tao Zhang & Yanyu Song & Li Sun & Yuedong Guo & Hao Zhang &, 2023. "Warming-induced vapor pressure deficit suppression of vegetation growth diminished in northern peatlands," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Min Liu & Jianpeng Fan & Yuanzheng Li & Qizheng Mao, 2023. "Ecosystem Service Optimisation in the Central Plains Urban Agglomeration Based on Land Use Structure Adjustment," Land, MDPI, vol. 12(7), pages 1-27, July.
    5. Brendan Fisher & Stephen Polasky & Thomas Sterner, 2011. "Conservation and Human Welfare: Economic Analysis of Ecosystem Services," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(2), pages 151-159, February.
    6. Mengzhu Liu & Leilei Min & Jingjing Zhao & Yanjun Shen & Hongwei Pei & Hongjuan Zhang & Yali Li, 2021. "The Impact of Land Use Change on Water-Related Ecosystem Services in the Bashang Area of Hebei Province, China," Sustainability, MDPI, vol. 13(2), pages 1-15, January.
    7. Ram Avtar & Apisai Vakacegu Rinamalo & Deha Agus Umarhadi & Ankita Gupta & Khaled Mohamed Khedher & Ali P. Yunus & Bhupendra P. Singh & Pankaj Kumar & Netrananda Sahu & Anjar Dimara Sakti, 2022. "Land Use Change and Prediction for Valuating Carbon Sequestration in Viti Levu Island, Fiji," Land, MDPI, vol. 11(8), pages 1-17, August.
    8. Duy X. Tran & Diane Pearson & Alan Palmer & David Gray, 2020. "Developing a Landscape Design Approach for the Sustainable Land Management of Hill Country Farms in New Zealand," Land, MDPI, vol. 9(6), pages 1-29, June.
    9. Orawan Kumdee & Md. Samim Hossain Molla & Kulwadee Kanavittaya & Jutamas Romkaew & Ed Sarobol & Sutkhet Nakasathien, 2023. "Morpho-Physiological and Biochemical Responses of Maize Hybrids under Recurrent Water Stress at Early Vegetative Stage," Agriculture, MDPI, vol. 13(9), pages 1-30, September.
    10. Sylwia Barwicka & Małgorzata Milecka, 2022. "The “Perfect Village” Model as a Result of Research on Transformation of Plant Cover—Case Study of the Puchaczów Commune," Sustainability, MDPI, vol. 14(21), pages 1-22, November.
    11. Shujun Liu & Xinzhuan Yao & Degang Zhao & Litang Lu, 2021. "Evaluation of the ecological benefits of tea gardens in Meitan County, China, using the InVEST model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7140-7155, May.
    12. Shengjun Yan & Xuan Wang & Yanpeng Cai & Chunhui Li & Rui Yan & Guannan Cui & Zhifeng Yang, 2018. "An Integrated Investigation of Spatiotemporal Habitat Quality Dynamics and Driving Forces in the Upper Basin of Miyun Reservoir, North China," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    13. Fullman, Timothy J. & Bunting, Erin L. & Kiker, Gregory A. & Southworth, Jane, 2017. "Predicting shifts in large herbivore distributions under climate change and management using a spatially-explicit ecosystem model," Ecological Modelling, Elsevier, vol. 352(C), pages 1-18.
    14. Cordier, Mateo & Pérez Agúndez, José A. & Hecq, Walter & Hamaide, Bertrand, 2014. "A guiding framework for ecosystem services monetization in ecological–economic modeling," Ecosystem Services, Elsevier, vol. 8(C), pages 86-96.
    15. Anna Sidiropoulou & Dimitrios Chouvardas & Konstantinos Mantzanas & Stefanos Stefanidis & Maria Karatassiou, 2022. "Impact of Transhumant Livestock Grazing Abandonment on Pseudo-Alpine Grasslands in Greece in the Context of Climatic Change," Land, MDPI, vol. 11(12), pages 1-18, November.
    16. Barkat Rabbi & Zhong-Hua Chen & Subbu Sethuvenkatraman, 2019. "Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods," Energies, MDPI, vol. 12(14), pages 1-24, July.
    17. Mengmeng Gao & Nan Yang & Qiong Liu, 2024. "What Drives Vegetation Evolution in the Middle Reaches of the Yellow River Basin, Climate Change or Human Activities?," Sustainability, MDPI, vol. 16(22), pages 1-21, November.
    18. Christian Kiffner & John Kioko & Cecilia Leweri & Stefan Krause, 2014. "Seasonal Patterns of Mixed Species Groups in Large East African Mammals," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-22, December.
    19. Kaoru Kakinuma & Aki Yanagawa & Takehiro Sasaki & Mukund Palat Rao & Shinjiro Kanae, 2019. "Socio-ecological Interactions in a Changing Climate: A Review of the Mongolian Pastoral System," Sustainability, MDPI, vol. 11(21), pages 1-17, October.
    20. Erickson, Adam & Nitschke, Craig & Coops, Nicholas & Cumming, Steven & Stenhouse, Gordon, 2015. "Past-century decline in forest regeneration potential across a latitudinal and elevational gradient in Canada," Ecological Modelling, Elsevier, vol. 313(C), pages 94-102.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:12:p:2126-:d:1539104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.