IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i12p2126-d1539104.html
   My bibliography  Save this article

Forecasting of Grasslands Distribution on Mount Zireia Using Ecological Niche Modeling and Future Climatic Scenarios

Author

Listed:
  • Maria Karatassiou

    (Laboratory of Rangeland Ecology, School of Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 286, 54124 Thessaloniki, Greece)

  • Afroditi Stergiou

    (Laboratory of Rangeland Ecology, School of Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 286, 54124 Thessaloniki, Greece)

  • Dimitrios Chouvardas

    (Laboratory of Rangeland Ecology, School of Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 286, 54124 Thessaloniki, Greece)

  • Mohamed Tarhouni

    (Pastoral Ecosystems Spontaneous Plants and Associated Microorganisms Laboratory, Arid Regions Institute, University of Gabes, Route of Djerba km 22.5, Medenine 4100, Tunisia)

  • Athanasios Ragkos

    (Agricultural Economics Research Institute, Hellenic Agricultural Organization—DIMITRA, Kourtidou 56–58, 11145 Athens, Greece)

Abstract

Grassland ecosystems cover a high percentage of the terrestrial habitats of Earth and support the livelihood and well-being of at least one-fifth of the human population. Climate change and human activities are causing increasing pressure on arid and semi-arid regions. Land use/cover change significantly affects the function and distribution of grasslands, showing diverse patterns across space and time. The study investigated the spatial distribution of grasslands of Mount Zireia (Peloponnesus, Greece) using MaxEnt modeling based on CMIP6 models (CNRM-CM6 and CCMCC-ESM2) and two Shared Socioeconomic Pathways (SSP 245 and SSP 585) covering the period of 1970–2100. The results from the current (1970–2000) and several future periods (2020–2100) revealed that the MaxEnt model provided highly accurate forecasts. The grassland distribution was found to be significantly impacted by climate change, with impacts varying by period, scenario, and climate model used. In particular, the CNRM-CM6-1 model forecasts a substantial increase in grasslands at higher elevations up to 2100 m asl. The research emphasizes the importance of exploring the combined impacts of climate change and grazing intensity on land use and cover changes in mountainous grasslands.

Suggested Citation

  • Maria Karatassiou & Afroditi Stergiou & Dimitrios Chouvardas & Mohamed Tarhouni & Athanasios Ragkos, 2024. "Forecasting of Grasslands Distribution on Mount Zireia Using Ecological Niche Modeling and Future Climatic Scenarios," Land, MDPI, vol. 13(12), pages 1-18, December.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:12:p:2126-:d:1539104
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/12/2126/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/12/2126/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephen Polasky & Erik Nelson & Derric Pennington & Kris Johnson, 2011. "The Impact of Land-Use Change on Ecosystem Services, Biodiversity and Returns to Landowners: A Case Study in the State of Minnesota," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(2), pages 219-242, February.
    2. A. Park Williams & Craig D. Allen & Alison K. Macalady & Daniel Griffin & Connie A. Woodhouse & David M. Meko & Thomas W. Swetnam & Sara A. Rauscher & Richard Seager & Henri D. Grissino-Mayer & Jeffre, 2013. "Temperature as a potent driver of regional forest drought stress and tree mortality," Nature Climate Change, Nature, vol. 3(3), pages 292-297, March.
    3. Rizwan Muhammad & Wenyin Zhang & Zaheer Abbas & Feng Guo & Luc Gwiazdzinski, 2022. "Spatiotemporal Change Analysis and Prediction of Future Land Use and Land Cover Changes Using QGIS MOLUSCE Plugin and Remote Sensing Big Data: A Case Study of Linyi, China," Land, MDPI, vol. 11(3), pages 1-24, March.
    4. Paulo De Marco Júnior & Caroline Corrêa Nóbrega, 2018. "Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-25, September.
    5. Diogenis A. Kiziridis & Anna Mastrogianni & Magdalini Pleniou & Elpida Karadimou & Spyros Tsiftsis & Fotios Xystrakis & Ioannis Tsiripidis, 2022. "Acceleration and Relocation of Abandonment in a Mediterranean Mountainous Landscape: Drivers, Consequences, and Management Implications," Land, MDPI, vol. 11(3), pages 1-23, March.
    6. Han Olff & Mark E. Ritchie & Herbert H. T. Prins, 2002. "Global environmental controls of diversity in large herbivores," Nature, Nature, vol. 415(6874), pages 901-904, February.
    7. Dimitrios Chouvardas & Maria Karatassiou & Afroditi Stergiou & Garyfallia Chrysanthopoulou, 2022. "Identifying the Spatiotemporal Transitions and Future Development of a Grazed Mediterranean Landscape of South Greece," Land, MDPI, vol. 11(12), pages 1-22, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konstantinos Chontos & Ioannis Tsiripidis, 2023. "Open Habitats under Threat in Mountainous, Mediterranean Landscapes: Land Abandonment Consequences in the Vegetation Cover of the Thessalian Part of Mt Agrafa (Central Greece)," Land, MDPI, vol. 12(4), pages 1-22, April.
    2. Brendan Fisher & Stephen Polasky & Thomas Sterner, 2011. "Conservation and Human Welfare: Economic Analysis of Ecosystem Services," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(2), pages 151-159, February.
    3. Maysoon A A Osman & Elfatih M Abdel-Rahman & Joshua Orungo Onono & Lydia A Olaka & Muna M Elhag & Marian Adan & Henri E Z Tonnang, 2023. "Mapping, intensities and future prediction of land use/land cover dynamics using google earth engine and CA- artificial neural network model," PLOS ONE, Public Library of Science, vol. 18(7), pages 1-28, July.
    4. Duy X. Tran & Diane Pearson & Alan Palmer & David Gray, 2020. "Developing a Landscape Design Approach for the Sustainable Land Management of Hill Country Farms in New Zealand," Land, MDPI, vol. 9(6), pages 1-29, June.
    5. Sylwia Barwicka & Małgorzata Milecka, 2022. "The “Perfect Village” Model as a Result of Research on Transformation of Plant Cover—Case Study of the Puchaczów Commune," Sustainability, MDPI, vol. 14(21), pages 1-22, November.
    6. Shengjun Yan & Xuan Wang & Yanpeng Cai & Chunhui Li & Rui Yan & Guannan Cui & Zhifeng Yang, 2018. "An Integrated Investigation of Spatiotemporal Habitat Quality Dynamics and Driving Forces in the Upper Basin of Miyun Reservoir, North China," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    7. Anna Sidiropoulou & Dimitrios Chouvardas & Konstantinos Mantzanas & Stefanos Stefanidis & Maria Karatassiou, 2022. "Impact of Transhumant Livestock Grazing Abandonment on Pseudo-Alpine Grasslands in Greece in the Context of Climatic Change," Land, MDPI, vol. 11(12), pages 1-18, November.
    8. Díaz-Vallejo, Mauricio & Peña-Peniche, Alexander & Mota-Vargas, Claudio & Piña-Torres, Javier & Valencia-Rodríguez, Daniel & Rangel-Rivera, Coral E. & Gaviria-Hernández, Juliana & Rojas-Soto, Octavio, 2024. "Analyses of the variable selection using correlation methods: An approach to the importance of statistical inferences in the modelling process," Ecological Modelling, Elsevier, vol. 498(C).
    9. Mengmeng Gao & Nan Yang & Qiong Liu, 2024. "What Drives Vegetation Evolution in the Middle Reaches of the Yellow River Basin, Climate Change or Human Activities?," Sustainability, MDPI, vol. 16(22), pages 1-21, November.
    10. Christian Kiffner & John Kioko & Cecilia Leweri & Stefan Krause, 2014. "Seasonal Patterns of Mixed Species Groups in Large East African Mammals," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-22, December.
    11. Kaoru Kakinuma & Aki Yanagawa & Takehiro Sasaki & Mukund Palat Rao & Shinjiro Kanae, 2019. "Socio-ecological Interactions in a Changing Climate: A Review of the Mongolian Pastoral System," Sustainability, MDPI, vol. 11(21), pages 1-17, October.
    12. Shishay Kiros Weldegebriel & Kumelachew Yeshitela, 2021. "Measuring the Semi-Century Ecosystem-Service Value Variation in Mekelle City Region, Northern Ethiopia," Sustainability, MDPI, vol. 13(18), pages 1-28, September.
    13. Kevin Thellmann & Marc Cotter & Sabine Baumgartner & Anna Treydte & Georg Cadisch & Folkard Asch, 2018. "Tipping Points in the Supply of Ecosystem Services of a Mountainous Watershed in Southeast Asia," Sustainability, MDPI, vol. 10(7), pages 1-15, July.
    14. Gerling, Charlotte & Drechsler, Martin & Keuler, Klaus & Sturm, Astrid & Wätzold, Frank, 2022. "Time to consider the timing of conservation measures: designing cost-effective agri-environment schemes under climate change," MPRA Paper 113877, University Library of Munich, Germany.
    15. Hanwen Zhang & Yanqing Lang, 2022. "Quantifying and Analyzing the Responses of Habitat Quality to Land Use Change in Guangdong Province, China over the Past 40 Years," Land, MDPI, vol. 11(6), pages 1-23, May.
    16. Jingjing Liu & Jing Wang & Tianlin Zhai & Zehui Li, 2022. "The Response of Ecologically Functional Land to Changes in Urban Economic Growth and Transportation Construction in China," IJERPH, MDPI, vol. 19(21), pages 1-17, November.
    17. Shaofeng Yuan & Congmou Zhu & Lixia Yang & Fenghua Xie, 2019. "Responses of Ecosystem Services to Urbanization-Induced Land Use Changes in Ecologically Sensitive Suburban Areas in Hangzhou, China," IJERPH, MDPI, vol. 16(7), pages 1-14, March.
    18. Jingfeng Zhu & Ning Ding & Dehuan Li & Wei Sun & Yujing Xie & Xiangrong Wang, 2020. "Spatiotemporal Analysis of the Nonlinear Negative Relationship between Urbanization and Habitat Quality in Metropolitan Areas," Sustainability, MDPI, vol. 12(2), pages 1-20, January.
    19. Denghui Xu & Xianhua Guo & Teiji Watanabe & Kezhong Liang & Jianing Kou & Xiaolan Jiang, 2023. "Ecological Security Pattern Construction in Rural Settlements Based on Importance and Vulnerability of Ecosystem Services: A Case Study of the Southeast Region of Chongqing, China," Sustainability, MDPI, vol. 15(9), pages 1-18, May.
    20. Mauro Hermann & Heini Wernli & Matthias Röthlisberger, 2024. "Drastic increase in the magnitude of very rare summer-mean vapor pressure deficit extremes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:12:p:2126-:d:1539104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.