IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i8p1585-d1215326.html
   My bibliography  Save this article

The Relationship between Rural Spatial Form and Carbon Emission—A Case Study of Suburban Integrated Villages in Hunan Province, China

Author

Listed:
  • Limei Song

    (School of Architecture and Design, China University of Mining and Technology, Xuzhou 221116, China)

  • Feng Xu

    (School of Architecture and Planning, Hunan University, Changsha 410082, China
    Hunan Key Laboratory of Sciences of Urban and Rural Human Settlements in Hilly Areas, Hunan University, Changsha 410082, China)

  • Ming Sheng

    (School of Architecture and Planning, Hunan University, Changsha 410082, China)

  • Baohua Wen

    (School of Architecture and Planning, Hunan University, Changsha 410082, China)

Abstract

With the implementation of China’s rural revitalization strategy, the societies and economies of villages have been comprehensively developed, but the carbon emissions in rural areas have also been increasing year by year. Therefore, low-carbon control of the rural spatial form has become an important element of rural revitalization. This paper takes 18 suburban integrated villages in the plain terrain within Hunan Province, China, as the research object, quantifies the spatial morphology indicators of the overall rural community and the neighborhood building groups, and investigates the relationship between rural spatial form and carbon emissions in plain terrain, aiming to clarify the content of low-carbon control in rural spatial planning. The main conclusions are as follows. (1) The correlation between spatial form and carbon emissions at different levels of suburban integrated villages is “total volume form > neighborhood building groups combination form > overall layout form > neighborhood connection form”. When the scale of the villages is fixed, the spatial layout of the neighborhood building groups has a more direct influence on the carbon emissions of the residents. (2) The building density in the overall spatial form of the village has the greatest influence on the carbon emissions of the suburban integrated villages, and it is positively correlated. (3) There is a negative correlation between the form of neighborhood building groups and carbon emissions within a certain range. When the distance between the front and back of a building is 8–12 m, the carbon emissions of the building decrease with the increase in the degree of aggregation on the building, but when the distance between the front and back of a building reaches 12 m or more, the influence of the group layout form on the carbon emissions of the building is weakened. (4) Finally, based on the principle of “macro-control quantity and meso-control shape”, this paper proposes new control content and indicators for Hunan’s rural territorial space planning, which can provide a reference for low-carbon control in rural space form planning with suburban integration.

Suggested Citation

  • Limei Song & Feng Xu & Ming Sheng & Baohua Wen, 2023. "The Relationship between Rural Spatial Form and Carbon Emission—A Case Study of Suburban Integrated Villages in Hunan Province, China," Land, MDPI, vol. 12(8), pages 1-26, August.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:8:p:1585-:d:1215326
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/8/1585/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/8/1585/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaoqing Zhu & Tiancheng Zhang & Weijun Gao & Danying Mei, 2020. "Analysis on Spatial Pattern and Driving Factors of Carbon Emission in Urban–Rural Fringe Mixed-Use Communities: Cases Study in East Asia," Sustainability, MDPI, vol. 12(8), pages 1-16, April.
    2. Liang, Xinyuan & Jin, Xiaobin & He, Jie & Wang, Xiaorui & Xu, Cuilan & Qiao, Guoliang & Zhang, Xiaolin & Zhou, Yinkang, 2022. "Impacts of land management practice strategy on regional ecosystems: Enlightenment from ecological redline adjustment in Jiangsu, China," Land Use Policy, Elsevier, vol. 119(C).
    3. Kai Zhu & Manya Tu & Yingcheng Li, 2022. "Did Polycentric and Compact Structure Reduce Carbon Emissions? A Spatial Panel Data Analysis of 286 Chinese Cities from 2002 to 2019," Land, MDPI, vol. 11(2), pages 1-15, January.
    4. Zishuo Huang & Yingfang Liu & Jing Gao & Zhenwei Peng, 2022. "Approach for Village Carbon Emissions Index and Planning Strategies Generation Based on Two-Stage Optimization Models," Land, MDPI, vol. 11(5), pages 1-20, April.
    5. Chengzhi Yin & Jianhua Xiao & Tianqi Zhang, 2021. "Effectiveness of Chinese Regulatory Planning in Mitigating and Adapting to Climate Change: Comparative Analysis Based on Q Methodology," Sustainability, MDPI, vol. 13(17), pages 1-14, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eryu Zhang & Xiaoyu He & Peng Xiao, 2022. "Does Smart City Construction Decrease Urban Carbon Emission Intensity? Evidence from a Difference-in-Difference Estimation in China," Sustainability, MDPI, vol. 14(23), pages 1-16, December.
    2. Pingping Xiong & Xiaojie Wu & Jing Ye, 2023. "Building a novel multivariate nonlinear MGM(1,m,N|γ) model to forecast carbon emissions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9647-9671, September.
    3. Zejun Yu & Yao Wang & Bin Zhao & Zhixin Li & Qingli Hao, 2023. "Research on Carbon Emission Structure and Model in Low-Carbon Rural Areas: Bibliometric Analysis," Sustainability, MDPI, vol. 15(16), pages 1-22, August.
    4. Jiawei Wu & Wei Sun, 2023. "Regional Integration and Sustainable Development in the Yangtze River Delta, China: Towards a Conceptual Framework and Research Agenda," Land, MDPI, vol. 12(2), pages 1-20, February.
    5. Qian Cheng & Xiaobei Jiang & Haodong Zhang & Wuhong Wang & Chunwen Sun, 2020. "Data-Driven Detection Methods on Driver’s Pedal Action Intensity Using Triboelectric Nano-Generators," Sustainability, MDPI, vol. 12(21), pages 1-17, October.
    6. Jie Su & Bo Zhou & Yuanpei Liao & Chaoshen Wang & Tian Feng, 2022. "Impact Mechanism of the Urban Network on Carbon Emissions in Rapidly Developing Regions: Example of 47 Cities in Southwest China," Land, MDPI, vol. 11(4), pages 1-19, March.
    7. Wenyuan Jiang & Shuanglin Jiang, 2023. "Evolution of Regulations Controlling Human Pressure in Protected Areas of China," Sustainability, MDPI, vol. 15(5), pages 1-23, March.
    8. Maulana Mukhlis & Ryzal Perdana, 2022. "A Critical Analysis of the Challenges of Collaborative Governance in Climate Change Adaptation Policies in Bandar Lampung City, Indonesia," Sustainability, MDPI, vol. 14(7), pages 1-12, March.
    9. Li, Yingcheng, 2022. "Path-breaking industrial development reduces carbon emissions: Evidence from Chinese Provinces, 1999–2011," Energy Policy, Elsevier, vol. 167(C).
    10. Yuxi Liu & Rizhao Gong & Wenzhong Ye & Changsheng Jin & Jianxin Tang, 2022. "Urban Spatial Structure and Water Ecological Footprint: Empirical Analysis of the Urban Agglomerations in China," Sustainability, MDPI, vol. 14(21), pages 1-14, October.
    11. Tianhui Fan & Andrew Chapman, 2022. "Policy Driven Compact Cities: Toward Clarifying the Effect of Compact Cities on Carbon Emissions," Sustainability, MDPI, vol. 14(19), pages 1-19, October.
    12. Meimei Wang & Dezhen Kong & Jinhuang Mao & Weijing Ma & Ramamoorthy Ayyamperumal, 2022. "The Impacts of Land Use Spatial Form Changes on Carbon Emissions in Qinghai–Tibet Plateau from 2000 to 2020: A Case Study of the Lhasa Metropolitan Area," Land, MDPI, vol. 12(1), pages 1-17, December.
    13. Tianlin Zhai & Mingyuan Chang & Yingchao Li & Longyang Huang & Ye Chen & Guanyu Ding & Chenchen Zhao & Ling Li & Weiqiang Chen & Panfeng Zhang & Enxiang Cai & Caiyan Lei & Jing Wang, 2023. "Integrating Maslow’s Hierarchy of Needs and Ecosystem Services into Spatial Optimization of Urban Functions," Land, MDPI, vol. 12(9), pages 1-25, August.
    14. Jiansheng Wu & Shengyong Zhang & Haihao Wen & Xuening Fan, 2022. "Research on Multi-Scale Ecological Network Connectivity—Taking the Guangdong–Hong Kong–Macao Greater Bay Area as a Case Study," IJERPH, MDPI, vol. 19(22), pages 1-26, November.
    15. Limin Wen & Shufang Sun, 2023. "The Impact of Urban E-Commerce Transformation on Carbon Emissions in Chinese Cities: An Empirical Analysis Based on the PSM-DID Method," Sustainability, MDPI, vol. 15(7), pages 1-16, March.
    16. Ke Luo & Shuo Chen & Shixi Cui & Yuantao Liao & Yu He & Chunshan Zhou & Shaojian Wang, 2023. "Examining the Overall and Heterogeneous Impacts of Urban Spatial Structure on Carbon Emissions: A Case Study of Guangdong Province, China," Land, MDPI, vol. 12(9), pages 1-19, September.
    17. Liya Yang & Honghui Zhang & Xinqi Liao & Haiqi Wang & Yong Bian & Geng Liu & Weiling Luo, 2023. "The Relationship between Spatial Characteristics of Urban-Rural Settlements and Carbon Emissions in Guangdong Province," IJERPH, MDPI, vol. 20(3), pages 1-22, February.
    18. Yiheng Zhang & Shengyong Zhang & Yabo Gong, 2023. "The Association between Carbon Emission and Urban Spatial Form—A Study of Zhuhai, China," Land, MDPI, vol. 12(3), pages 1-18, March.
    19. Yahui Guang & Yongbin Huang, 2022. "Urban Form and Household Energy Consumption: Evidence from China Panel Data," Land, MDPI, vol. 11(8), pages 1-15, August.
    20. Di Zhu & Yinghong Wang & Shangui Peng & Fenglin Zhang, 2022. "Influence Mechanism of Polycentric Spatial Structure on Urban Land Use Efficiency: A Moderated Mediation Model," IJERPH, MDPI, vol. 19(24), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:8:p:1585-:d:1215326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.