IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i2p439-d1061916.html
   My bibliography  Save this article

Assessment of Soil Potentially Toxic Metal Pollution in Kolchugino Town, Russia: Characteristics and Pollution

Author

Listed:
  • Inna Z. Kamanina

    (Department of Ecology and Earth Sciences, Faculty of Natural and Engineering Sciences, Dubna State University, 141980 Dubna, Russia
    Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia)

  • Wael M. Badawy

    (Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
    Radiation Protection and Civil Defense Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo 13759, Egypt)

  • Svetlana P. Kaplina

    (Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, 141980 Dubna, Russia)

  • Oleg A. Makarov

    (Faculty of Soil Science, Lomonosov Moscow State University, 119991 Moscow, Russia)

  • Sergey V. Mamikhin

    (Faculty of Soil Science, Lomonosov Moscow State University, 119991 Moscow, Russia)

Abstract

The present study was carried out to describe the characteristic features of potentially toxic metals (PTMs) in the soil of industrial city, Kolchugino–Vladimir Region–Russia. The mass fractions in mg/kg of Cu, Pb, Zn, and Cd were measured by atomic absorption spectrometer (AAS). Multivariate statistical analysis and hierarchical cluster analysis (HCA), were performed. The obtained results of the potentially toxic elements were mapped using ArcGIS. A total of four pollution indices were calculated to identify the areas with significant pollution associations. The data analysis showed that locations 14 (urban area) and 16 (non-ferrous metallurgy plant) contribute significantly to pollution. Maximum likelihood method was used to classify the land-use and land-cover (LULC). The analysis shows that locations 14 and 16 are belonging to the industrial area on LULC. Great attention should be paid to the control and regulation of waste disposal into the environment, which in turn, has an adversely impact on human health. By using the data, it could help to identify areas where waste control measures need to be implemented, such as increasing recycling or introducing more waste control legislation. It could also help to identify areas where waste control efforts have been successful. Data can be used by government, policymakers, and stakeholders for future planning and R&D activities.

Suggested Citation

  • Inna Z. Kamanina & Wael M. Badawy & Svetlana P. Kaplina & Oleg A. Makarov & Sergey V. Mamikhin, 2023. "Assessment of Soil Potentially Toxic Metal Pollution in Kolchugino Town, Russia: Characteristics and Pollution," Land, MDPI, vol. 12(2), pages 1-16, February.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:2:p:439-:d:1061916
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/2/439/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/2/439/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shuangmei Tong & Hairong Li & Li Wang & Muyesaier Tudi & Linsheng Yang, 2020. "Concentration, Spatial Distribution, Contamination Degree and Human Health Risk Assessment of Heavy Metals in Urban Soils across China between 2003 and 2019—A Systematic Review," IJERPH, MDPI, vol. 17(9), pages 1-22, April.
    2. Xiaoli Zhou & Qin Chen & Chang Liu & Yanming Fang, 2017. "Using Moss to Assess Airborne Heavy Metal Pollution in Taizhou, China," IJERPH, MDPI, vol. 14(4), pages 1-13, April.
    3. Mohamed K. Abdel-Fattah & Elsayed Said Mohamed & Enas M. Wagdi & Sahar A. Shahin & Ali A. Aldosari & Rosa Lasaponara & Manal A. Alnaimy, 2021. "Quantitative Evaluation of Soil Quality Using Principal Component Analysis: The Case Study of El-Fayoum Depression Egypt," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahmuda Akter & Mohammad Humayun Kabir & Mohammad Ashraful Alam & Hammadullah Al Mashuk & Mohammad Mizanur Rahman & Mohammad Saiful Alam & Graham Brodie & S. M. Mofijul Islam & Yam Kanta Gaihre & Golu, 2023. "Geospatial Visualization and Ecological Risk Assessment of Heavy Metals in Rice Soil of a Newly Developed Industrial Zone in Bangladesh," Sustainability, MDPI, vol. 15(9), pages 1-14, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elsayed A. Abdelsamie & Mostafa A. Abdellatif & Farag O. Hassan & Ahmed A. El Baroudy & Elsayed Said Mohamed & Dmitry E. Kucher & Mohamed S. Shokr, 2022. "Integration of RUSLE Model, Remote Sensing and GIS Techniques for Assessing Soil Erosion Hazards in Arid Zones," Agriculture, MDPI, vol. 13(1), pages 1-19, December.
    2. Yanbin Jiang & Miao Fan & Ronggui Hu & Jinsong Zhao & Yupeng Wu, 2018. "Mosses Are Better than Leaves of Vascular Plants in Monitoring Atmospheric Heavy Metal Pollution in Urban Areas," IJERPH, MDPI, vol. 15(6), pages 1-13, May.
    3. Manal A. Alnaimy & Sahar A. Shahin & Ahmed A. Afifi & Ahmed A. Ewees & Natalia Junakova & Magdalena Balintova & Mohamed Abd Elaziz, 2022. "Spatio Prediction of Soil Capability Modeled with Modified RVFL Using Aptenodytes Forsteri Optimization and Digital Soil Assessment Technique," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
    4. Elżbieta Zawierucha & Monika Skowrońska & Marcin Zawierucha, 2022. "Chemical and Biological Properties of Agricultural Soils Located along Communication Routes," Agriculture, MDPI, vol. 12(12), pages 1-11, November.
    5. Hua Wang & Wuyan Li & Congmou Zhu & Xiaobo Tang, 2021. "Analysis of Heavy Metal Pollution in Cultivated Land of Different Quality Grades in Yangtze River Delta of China," IJERPH, MDPI, vol. 18(18), pages 1-17, September.
    6. Yingying Xing & Ning Wang & Xiaoli Niu & Wenting Jiang & Xiukang Wang, 2021. "Assessment of Potato Farmland Soil Nutrient Based on MDS-SQI Model in the Loess Plateau," Sustainability, MDPI, vol. 13(7), pages 1-13, April.
    7. Elsayed M. Ramadan & Abir M. Badr & Fadi Abdelradi & Abdelazim Negm & Ahmed M. Nosair, 2023. "Detection of Groundwater Quality Changes in Minia Governorate, West Nile River," Sustainability, MDPI, vol. 15(5), pages 1-26, February.
    8. Yanbin Jiang & Xifeng Zhang & Ronggui Hu & Jinsong Zhao & Miao Fan & Muhammad Shaaban & Yupeng Wu, 2020. "Urban Atmospheric Environment Quality Assessment by Naturally Growing Bryophytes in Central China," IJERPH, MDPI, vol. 17(12), pages 1-14, June.
    9. Ahmed M. Aggag & Abdulaziz Alharbi, 2022. "Spatial Analysis of Soil Properties and Site-Specific Management Zone Delineation for the South Hail Region, Saudi Arabia," Sustainability, MDPI, vol. 14(23), pages 1-19, December.
    10. Ahmed S Abuzaid & Yasser S. A. Mazrou & Ahmed A El Baroudy & Zheli Ding & Mohamed S. Shokr, 2022. "Multi-Indicator and Geospatial Based Approaches for Assessing Variation of Land Quality in Arid Agroecosystems," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    11. Hiroshi Kudo & Chihiro Inoue & Kazuki Sugawara, 2021. "Effects of Growth Stage and Cd Chemical Form on Cd and Zn Accumulation in Arabidopsis halleri ssp. gemmifera," IJERPH, MDPI, vol. 18(8), pages 1-12, April.
    12. Rui Zhang & Tao Chen & Lijie Pu & Lu Qie & Sihua Huang & Dejing Chen, 2023. "Current Situation of Agricultural Soil Pollution in Jiangsu Province: A Meta-Analysis," Land, MDPI, vol. 12(2), pages 1-21, February.
    13. Mostafa A. Abdellatif & Farag O. Hassan & Heba S. A. Rashed & Ahmed A. El Baroudy & Elsayed Said Mohamed & Dmitry E. Kucher & Sameh Kotb Abd-Elmabod & Mohamed S. Shokr & Ahmed S. Abuzaid, 2023. "Assessing Soil Organic Carbon Pool for Potential Climate-Change Mitigation in Agricultural Soils—A Case Study Fayoum Depression, Egypt," Land, MDPI, vol. 12(9), pages 1-19, September.
    14. Rong Hu & Yun Yan & Xiaoli Zhou & Yanan Wang & Yanming Fang, 2018. "Monitoring Heavy Metal Contents with Sphagnum Junghuhnianum Moss Bags in Relation to Traffic Volume in Wuxi, China," IJERPH, MDPI, vol. 15(2), pages 1-12, February.
    15. Mostafa A. Abdellatif & Ahmed A. El Baroudy & Muhammad Arshad & Esawy K. Mahmoud & Ahmed M. Saleh & Farahat S. Moghanm & Kamal H. Shaltout & Ebrahem M. Eid & Mohamed S. Shokr, 2021. "A GIS-Based Approach for the Quantitative Assessment of Soil Quality and Sustainable Agriculture," Sustainability, MDPI, vol. 13(23), pages 1-24, December.
    16. Mohamed S. Shokr & Mostafa. A. Abdellatif & Ahmed A. El Baroudy & Abdelrazek Elnashar & Esmat F. Ali & Abdelaziz A. Belal & Wael. Attia & Mukhtar Ahmed & Ali A. Aldosari & Zoltan Szantoi & Mohamed E. , 2021. "Development of a Spatial Model for Soil Quality Assessment under Arid and Semi-Arid Conditions," Sustainability, MDPI, vol. 13(5), pages 1-15, March.
    17. Mengdie Qi & Yingjun Wu & Shu Zhang & Guiying Li & Taicheng An, 2023. "Pollution Profiles, Source Identification and Health Risk Assessment of Heavy Metals in Soil near a Non-Ferrous Metal Smelting Plant," IJERPH, MDPI, vol. 20(2), pages 1-15, January.
    18. Xianglong Fan & Pan Gao & Li Zuo & Long Duan & Hao Cang & Mengli Zhang & Qiang Zhang & Ze Zhang & Xin Lv & Lifu Zhang, 2023. "Soil Quality Evaluation for Cotton Fields in Arid Region Based on Graph Convolution Network," Land, MDPI, vol. 12(10), pages 1-18, October.
    19. Maria Grazia Alaimo & Daniela Varrica, 2020. "Recognition of Trace Element Contamination Using Ficus macrophylla Leaves in Urban Environment," IJERPH, MDPI, vol. 17(3), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:2:p:439-:d:1061916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.