IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i9p1457-d904674.html
   My bibliography  Save this article

Evaluation of Cultivated Land Quality in Semiarid Sandy Areas: A Case Study of the Horqin Zuoyihou Banner

Author

Listed:
  • Jie Liang

    (College of Land Science and Technology, China Agricultural University, Beijing 100193, China
    Inner Mongolia Museum of Natural History, Huhhot 010010, China)

  • Huihui Zheng

    (College of Land Science and Technology, China Agricultural University, Beijing 100193, China)

  • Zhaoyang Cai

    (College of Land Science and Technology, China Agricultural University, Beijing 100193, China)

  • Yimin Zhou

    (College of Land Science and Technology, China Agricultural University, Beijing 100193, China)

  • Yan Xu

    (College of Land Science and Technology, China Agricultural University, Beijing 100193, China
    Key Laboratory of Agricultural Land Quality and Monitoring of Nature Resource, Beijing 100193, China)

Abstract

Objective: The evaluation of cultivated land quality from the regional perspective and the clear level and change in cultivated land quality in the whole region can better guide the construction of cultivated land quality, carry out scientific optimization allocation, improve grain production capacity, and promote the sustainable use of cultivated land. Research methods: The utilization of local resources and natural conditions were comprehensively considered, and the evaluation was carried out from the four dimensions of ecology, quantity, spatial structure and scale to comprehensively reflect the level of regional cultivated land utilization. Results: (1) The cultivated land quality level of the Horqin Zuoyihou Banner is low, and the pressure of regional water resources is great. Some cultivated land is located in the area with poor natural conditions, and there are many thin and narrow cultivated areas of land. The area of cultivated land that can be carried by regional water resources under current irrigation is 184,492.17 hm 2 , and that under water-saving irrigation is 259,703.72 hm 2 , which are lower than the current cultivated land areas. (2) During the study period, the total amount and spatial distribution of cultivated land changed greatly, and there were good natural conditions and utilization conditions of newly added cultivated land, but the quality of cultivated land from the regional perspective showed a downward trend. The dynamic attitude of cultivated land change was 0.99%. (3) According to the evaluation results, the cultivated land was divided into the following four categories: priority protection type, optimization and coordination type, gradual conversion type and priority conversion type, which accounted for 34.18%, 30.59%, 28.83% and 6.40% of the total cultivated land area, respectively. Conclusions: There is a sharp contradiction between the supply and demand of water resources, and the quality of cultivated land in the region is low and shows a downward trend, which is not conducive to the sustainable use of regional land resources. In this regard, the Horqin Zuoyihou Banner should actively curb the growth of cultivated land, develop water-saving irrigation processes, strengthen ecological environment protection, and systematically optimize the layout of cultivated land on the premise of ensuring ecological security according to the actual conditions of different regions.

Suggested Citation

  • Jie Liang & Huihui Zheng & Zhaoyang Cai & Yimin Zhou & Yan Xu, 2022. "Evaluation of Cultivated Land Quality in Semiarid Sandy Areas: A Case Study of the Horqin Zuoyihou Banner," Land, MDPI, vol. 11(9), pages 1-17, September.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:9:p:1457-:d:904674
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/9/1457/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/9/1457/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Mo & Fu, Qiang & Singh, Vijay P. & Liu, Dong & Li, Tianxiao & Zhou, Yan, 2020. "Managing agricultural water and land resources with tradeoff between economic, environmental, and social considerations: A multi-objective non-linear optimization model under uncertainty," Agricultural Systems, Elsevier, vol. 178(C).
    2. Chen, Lili & Song, Ge & Meadows, Michael E. & Zou, Chaohui, 2018. "Spatio-temporal evolution of the early-warning status of cultivated land and its driving factors: A case study of Heilongjiang Province, China," Land Use Policy, Elsevier, vol. 72(C), pages 280-292.
    3. Zhou, Yang & Li, Xunhuan & Liu, Yansui, 2021. "Cultivated land protection and rational use in China," Land Use Policy, Elsevier, vol. 106(C).
    4. Chen, Lili & Zhao, Hongsheng & Song, Ge & Liu, Ye, 2021. "Optimization of cultivated land pattern for achieving cultivated land system security: A case study in Heilongjiang Province, China," Land Use Policy, Elsevier, vol. 108(C).
    5. Wenbo Li & Dongyan Wang & Shuhan Liu & Yuanli Zhu & Zhuoran Yan, 2020. "Reclamation of Cultivated Land Reserves in Northeast China: Indigenous Ecological Insecurity Underlying National Food Security," IJERPH, MDPI, vol. 17(4), pages 1-16, February.
    6. Xiong, Lvyang & Xu, Xu & Engel, Bernard & Xiong, Yunwu & Huang, Quanzhong & Huang, Guanhua, 2021. "Predicting agroecosystem responses to identify appropriate water-saving management in arid irrigated regions with shallow groundwater: Realization on a regional scale," Agricultural Water Management, Elsevier, vol. 247(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianhui Dong & Wenju Yun & Kening Wu & Shaoshuai Li & Bingrui Liu & Qiaoyuan Lu, 2023. "Spatio-Temporal Analysis of Cultivated Land from 2010 to 2020 in Long’an County, Karst Region, China," Land, MDPI, vol. 12(2), pages 1-22, February.
    2. Ziwei Liu & Mingchang Wang & Xingnan Liu & Fengyan Wang & Xiaoyan Li & Jianguo Wang & Guanglei Hou & Shijun Zhao, 2023. "Ecological Security Assessment and Warning of Cultivated Land Quality in the Black Soil Region of Northeast China," Land, MDPI, vol. 12(5), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaowei Yao & Ting Luo & Yingjun Xu & Wanxu Chen & Jie Zeng, 2022. "Prediction of Spatiotemporal Changes in Sloping Cropland in the Middle Reaches of the Yangtze River Region under Different Scenarios," IJERPH, MDPI, vol. 20(1), pages 1-22, December.
    2. Sun, Xueqing & Xiang, Pengcheng & Cong, Kexin, 2023. "Research on early warning and control measures for arable land resource security," Land Use Policy, Elsevier, vol. 128(C).
    3. Li, Xiaoliang & Wu, Kening & Yang, Qijun & Hao, Shiheng & Feng, Zhe & Ma, Jinliang, 2023. "Quantitative assessment of cultivated land use intensity in Heilongjiang Province, China, 2001–2015," Land Use Policy, Elsevier, vol. 125(C).
    4. Shuai Xie & Guanyi Yin & Wei Wei & Qingzhi Sun & Zhan Zhang, 2022. "Spatial–Temporal Change in Paddy Field and Dryland in Different Topographic Gradients: A Case Study of China during 1990–2020," Land, MDPI, vol. 11(10), pages 1-20, October.
    5. Zhiyuan Zhu & Zhenzhong Dai & Shilin Li & Yongzhong Feng, 2022. "Spatiotemporal Evolution of Non-Grain Production of Cultivated Land and Its Underlying Factors in China," IJERPH, MDPI, vol. 19(13), pages 1-15, July.
    6. Houtian Tang & Yuanlai Wu & Jinxiu Chen & Liuxin Deng & Minjie Zeng, 2022. "How Does Change in Rural Residential Land Affect Cultivated Land Use Efficiency? An Empirical Study Based on 42 Cities in the Middle Reaches of the Yangtze River," Land, MDPI, vol. 11(12), pages 1-20, December.
    7. Xuan Luo & Zhaomin Tong & Yifan Xie & Rui An & Zhaochen Yang & Yanfang Liu, 2022. "Land Use Change under Population Migration and Its Implications for Human–Land Relationship," Land, MDPI, vol. 11(6), pages 1-22, June.
    8. Xigui Li & Pengnan Xiao & Yong Zhou & Jie Xu & Qing Wu, 2022. "The Spatiotemporal Evolution Characteristics of Cultivated Land Multifunction and Its Trade-Off/Synergy Relationship in the Two Lake Plains," IJERPH, MDPI, vol. 19(22), pages 1-34, November.
    9. Xiaoying Wang & Hangang Hu & Aifeng Ning & Guan Li & Xueqi Wang, 2022. "The Impact of Farmers’ Perception on Their Cultivated Land Quality Protection Behavior: A Case Study of Ningbo, China," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
    10. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    11. Jorge A. Garcia & Angelos Alamanos, 2022. "Integrated modelling approaches for sustainable agri-economic growth and environmental improvement: Examples from Canada, Greece, and Ireland," Papers 2208.09087, arXiv.org.
    12. Yang Sheng & Weizhong Liu & Hailiang Xu & Xianchao Gao, 2021. "The Spatial Distribution Characteristics of the Cultivated Land Quality in the Diluvial Fan Terrain of the Arid Region: A Case Study of Jimsar County, Xinjiang, China," Land, MDPI, vol. 10(9), pages 1-29, August.
    13. Li, Mo & Fu, Qiang & Singh, Vijay P. & Liu, Dong & Li, Jiang, 2020. "Optimization of sustainable bioenergy production considering energy-food-water-land nexus and livestock manure under uncertainty," Agricultural Systems, Elsevier, vol. 184(C).
    14. Zhang, Bangbang & Li, Xian & Chen, Haibin & Niu, Wenhao & Kong, Xiangbin & Yu, Qiang & Zhao, Minjuan & Xia, Xianli, 2022. "Identifying opportunities to close yield gaps in China by use of certificated cultivars to estimate potential productivity," Land Use Policy, Elsevier, vol. 117(C).
    15. Xing Liu & Zhaoyang Cai & Yan Xu & Huihui Zheng & Kaige Wang & Fengrong Zhang, 2022. "Suitability Evaluation of Cultivated Land Reserved Resources in Arid Areas Based on Regional Water Balance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1463-1479, March.
    16. Liu, Yansui & Zhou, Yang, 2021. "Reflections on China's food security and land use policy under rapid urbanization," Land Use Policy, Elsevier, vol. 109(C).
    17. Ning He & Wenxian Guo & Hongxiang Wang & Long Yu & Siyuan Cheng & Lintong Huang & Xuyang Jiao & Wenxiong Chen & Haotong Zhou, 2023. "Temporal and Spatial Variations in Landscape Habitat Quality under Multiple Land-Use/Land-Cover Scenarios Based on the PLUS-InVEST Model in the Yangtze River Basin, China," Land, MDPI, vol. 12(7), pages 1-19, July.
    18. Lingyan Huang & Shanshan Xiang & Jianzhuang Zheng, 2022. "Fine-Scale Monitoring of Industrial Land and Its Intra-Structure Using Remote Sensing Images and POIs in the Hangzhou Bay Urban Agglomeration, China," IJERPH, MDPI, vol. 20(1), pages 1-21, December.
    19. Song, Xiaoqing & Wang, Xiong & Hu, Shougeng & Xiao, Renbin & Scheffran, Jürgen, 2022. "Functional transition of cultivated ecosystems: Underlying mechanisms and policy implications in China," Land Use Policy, Elsevier, vol. 119(C).
    20. Yue, Qiong & Guo, Ping, 2021. "Managing agricultural water-energy-food-environment nexus considering water footprint and carbon footprint under uncertainty," Agricultural Water Management, Elsevier, vol. 252(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:9:p:1457-:d:904674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.