IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i6p914-d839188.html
   My bibliography  Save this article

Rediscovering the Scaling Law of Urban Land from a Multi-Scale Perspective—A Case Study of Wuhan

Author

Listed:
  • Qingsong He

    (School of Public Administration, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Lingping Huang

    (School of Public Administration, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Jing Li

    (School of Public Administration, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

The law of urban scaling implies that there is a universally applicable nonlinear scaling relationship between population size and urban indicators, which is a method of quantitative analysis that can reflect the growth law and internal logic of the urban system. However, most present research is conducted at the municipal scale, and studies of scaling law in the inner-city system are scarce, especially from the perspective of compact urban form development. The goal of this paper is to discover the scaling law within urban systems from a multi-scale perspective. Through the empirical analysis of Wuhan, this paper examines the internal scale law of the urban system from the municipal and district scales. Moreover, we use the landscape expansion index to perform spatial autocorrelation analysis. In this way, we assess the relationship between the compactness of urban morphological development and the urban scaling law. The results indicate that the temporal scaling law on the city scale has a more significant linear law than the single-year scaling law. The analysis also shows the scaling law relationship within the inner-city system. Nevertheless, there is a deviation between the temporal scaling law and the cross-section scaling law. Namely, the time series development of a district does not follow the section scaling law of the urban system. Furthermore, the urban scaling law shows a negative correlation with the compactness of the urban form development. It is crucial to understand the current economic development and resource endowment of an urban system in the urbanization process, as it significantly contributes to urban development and regional coordinated planning.

Suggested Citation

  • Qingsong He & Lingping Huang & Jing Li, 2022. "Rediscovering the Scaling Law of Urban Land from a Multi-Scale Perspective—A Case Study of Wuhan," Land, MDPI, vol. 11(6), pages 1-15, June.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:6:p:914-:d:839188
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/6/914/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/6/914/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rudolf Cesaretti & José Lobo & Luís M A Bettencourt & Scott G Ortman & Michael E Smith, 2016. "Population-Area Relationship for Medieval European Cities," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-27, October.
    2. Xu, Chao & Haase, Dagmar & Su, Meirong & Yang, Zhifeng, 2019. "The impact of urban compactness on energy-related greenhouse gas emissions across EU member states: Population density vs physical compactness," Applied Energy, Elsevier, vol. 254(C).
    3. Gudipudi, Ramana & Rybski, Diego & Lüdeke, Matthias K.B. & Zhou, Bin & Liu, Zhu & Kropp, Jürgen P., 2019. "The efficient, the intensive, and the productive: Insights from urban Kaya scaling," Applied Energy, Elsevier, vol. 236(C), pages 155-162.
    4. Luiz G A Alves & Haroldo V Ribeiro & Ervin K Lenzi & Renio S Mendes, 2013. "Distance to the Scaling Law: A Useful Approach for Unveiling Relationships between Crime and Urban Metrics," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-8, August.
    5. Jose Lobo & Luis MA Bettencourt & Michael E Smith & Scott Ortman, 2020. "Settlement scaling theory: Bridging the study of ancient and contemporary urban systems," Urban Studies, Urban Studies Journal Limited, vol. 57(4), pages 731-747, March.
    6. Y. Xiong & D. Bingham & W. J. Braun & X. J. Hu, 2019. "Moran's statistic-based nonparametric test with spatio-temporal observations," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 31(1), pages 244-267, January.
    7. Brian J. L. Berry, 1964. "Cities As Systems Within Systems Of Cities," Papers in Regional Science, Wiley Blackwell, vol. 13(1), pages 147-163, January.
    8. Haroldo V Ribeiro & Quentin S Hanley & Dan Lewis, 2018. "Unveiling relationships between crime and property in England and Wales via density scale-adjusted metrics and network tools," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-21, February.
    9. José Lobo & Luís M A Bettencourt & Deborah Strumsky & Geoffrey B West, 2013. "Urban Scaling and the Production Function for Cities," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-10, March.
    10. Nicholas Z Muller & Akshaya Jha, 2017. "Does environmental policy affect scaling laws between population and pollution? Evidence from American metropolitan areas," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-15, August.
    11. Luís M A Bettencourt & José Lobo & Deborah Strumsky & Geoffrey B West, 2010. "Urban Scaling and Its Deviations: Revealing the Structure of Wealth, Innovation and Crime across Cities," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-9, November.
    12. Xu, Gang & Xu, Zhibang & Gu, Yanyan & Lei, Weiqian & Pan, Yupiao & Liu, Jie & Jiao, Limin, 2020. "Scaling laws in intra-urban systems and over time at the district level in Shanghai, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessio Russo & Giuseppe T. Cirella, 2023. "Urban Ecosystem Services: Advancements in Urban Green Development," Land, MDPI, vol. 12(3), pages 1-4, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joao Meirelles & Fabiano L. Ribeiro & Gabriel Cury & Claudia R. Binder & Vinicius M. Netto, 2021. "More from Less? Environmental Rebound Effects of City Size," Sustainability, MDPI, vol. 13(7), pages 1-20, April.
    2. Joao Meirelles & Camilo Rodrigues Neto & Fernando Fagundes Ferreira & Fabiano Lemes Ribeiro & Claudia Rebeca Binder, 2018. "Evolution of urban scaling: Evidence from Brazil," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-15, October.
    3. Xu, Gang & Xu, Zhibang & Gu, Yanyan & Lei, Weiqian & Pan, Yupiao & Liu, Jie & Jiao, Limin, 2020. "Scaling laws in intra-urban systems and over time at the district level in Shanghai, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    4. Li, Zekun & Chen, Zhenhua, 2023. "Predicting the future development scale of high-speed rail through the urban scaling law," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    5. Chen, Yanguang, 2017. "Multi-scaling allometric analysis for urban and regional development," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 673-689.
    6. Lu Zhang & Xuehan Lin & Bingkui Qiu & Maomao Zhang & Qingsong He, 2022. "The Industrial Sprawl in China from 2010 to 2019: A Multi-Level Spatial Analysis Based on Urban Scaling Law," IJERPH, MDPI, vol. 19(23), pages 1-14, December.
    7. Jack Sutton & Golnaz Shahtahmassebi & Haroldo V Ribeiro & Quentin S Hanley, 2022. "Population density and spreading of COVID-19 in England and Wales," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-19, March.
    8. Luiz G A Alves & Renio S Mendes & Ervin K Lenzi & Haroldo V Ribeiro, 2015. "Scale-Adjusted Metrics for Predicting the Evolution of Urban Indicators and Quantifying the Performance of Cities," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-17, September.
    9. Jose Lobo & Luis MA Bettencourt & Michael E Smith & Scott Ortman, 2020. "Settlement scaling theory: Bridging the study of ancient and contemporary urban systems," Urban Studies, Urban Studies Journal Limited, vol. 57(4), pages 731-747, March.
    10. Alves, L.G.A. & Ribeiro, H.V. & Lenzi, E.K. & Mendes, R.S., 2014. "Empirical analysis on the connection between power-law distributions and allometries for urban indicators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 409(C), pages 175-182.
    11. Daan Francois Toerien, 2022. "Linking Entrepreneurial Activities and Community Prosperity/Poverty in United States Counties: Use of the Enterprise Dependency Index," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    12. Yves Bettignies & Joao Meirelles & Gabriela Fernandez & Franziska Meinherz & Paul Hoekman & Philippe Bouillard & Aristide Athanassiadis, 2019. "The Scale-Dependent Behaviour of Cities: A Cross-Cities Multiscale Driver Analysis of Urban Energy Use," Sustainability, MDPI, vol. 11(12), pages 1-20, June.
    13. Michail Fragkias & José Lobo & Deborah Strumsky & Karen C Seto, 2013. "Does Size Matter? Scaling of CO2 Emissions and U.S. Urban Areas," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-8, June.
    14. Chenchen Shi & Naliang Guo & Xiaoping Zhu & Feng Wu, 2022. "Assessing Urban Resilience from the Perspective of Scaling Law: Evidence from Chinese Cities," Land, MDPI, vol. 11(10), pages 1-23, October.
    15. Danie Francois Toerien, 2022. "Temporal and Geographic Stress Testing of Entrepreneurial Proportionalities in United States Counties," World, MDPI, vol. 3(3), pages 1-31, July.
    16. Wang, Jia & Hu, Jun & Shen, Shifei & Zhuang, Jun & Ni, Shunjiang, 2020. "Crime risk analysis through big data algorithm with urban metrics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    17. Yu Sang Chang & Sung Jun Jo & Yoo-Taek Lee & Yoonji Lee, 2021. "Population Density or Populations Size. Which Factor Determines Urban Traffic Congestion?," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    18. Wenhan Feng & Bayi Li & Zebin Chen & Peng Liu, 2021. "City size based scaling of the urban internal nodes layout," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-16, April.
    19. Diana Reckien & Johannes Flacke & Marta Olazabal & Oliver Heidrich, 2015. "The Influence of Drivers and Barriers on Urban Adaptation and Mitigation Plans—An Empirical Analysis of European Cities," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-21, August.
    20. Daan Toerien, 2021. "Orderliness in Tourism Enterprise Dynamics in United States Micropolitan Statistical Areas," Sustainability, MDPI, vol. 13(11), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:6:p:914-:d:839188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.