IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i12p1320-d692716.html
   My bibliography  Save this article

A Validation Procedure for Ecological Corridor Locations

Author

Listed:
  • Etienne Lalechère

    (Université Grenoble Alpes, INRAE, LESSEM, 38402 Saint-Martin-d’Hères, France)

  • Laurent Bergès

    (Université Grenoble Alpes, INRAE, LESSEM, 38402 Saint-Martin-d’Hères, France)

Abstract

Connectivity conservation analysis is based on a wide range of approaches designed to pinpoint key ecological corridors in order to maintain multispecies flows. However, the lack of validation procedures with accessible data prevents one from evaluating the accuracy of ecological corridor locations. We propose a new validation procedure to evaluate the accuracy of ecological corridor locations in landscape connectivity approaches. The ability of the procedure to properly rank the accuracy of different landscape connectivity approaches was illustrated in a study case. Maxent model and circuit theory were used to locate ecological corridors for forest bird species, following three approaches based on land cover, umbrella species and multispecies presence data. The validation procedure was used to compare the three approaches. Our validation procedure ranked the three approaches as expected, considering that accuracy in locating ecological corridors is related to the biological realism of calibration data. The corridors modelled were more accurate with species presence data (umbrella and multispecies approaches) compared to land cover proxy (habitat-based approach). These results confirm the quality of the validation procedure. Our validation procedure can be used to: (1) evaluate the accuracy of the location of ecological corridors; (2) select the best approach to locate ecological corridors, and (3) validate the underlying assumptions of landscape connectivity approaches (e.g., dispersal and matrix resistance values).

Suggested Citation

  • Etienne Lalechère & Laurent Bergès, 2021. "A Validation Procedure for Ecological Corridor Locations," Land, MDPI, vol. 10(12), pages 1-18, December.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:12:p:1320-:d:692716
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/12/1320/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/12/1320/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Driezen, Kassandra & Adriaensen, Frank & Rondinini, Carlo & Doncaster, C. Patrick & Matthysen, Erik, 2007. "Evaluating least-cost model predictions with empirical dispersal data: A case-study using radiotracking data of hedgehogs (Erinaceus europaeus)," Ecological Modelling, Elsevier, vol. 209(2), pages 314-322.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junga Lee & Christopher D. Ellis & Yun Eui Choi & Soojin You & Jinhyung Chon, 2015. "An Integrated Approach to Mitigation Wetland Site Selection: A Case Study in Gwacheon, Korea," Sustainability, MDPI, vol. 7(3), pages 1-28, March.
    2. J Nevil Amos & Andrew F Bennett & Ralph Mac Nally & Graeme Newell & Alexandra Pavlova & James Q Radford & James R Thomson & Matt White & Paul Sunnucks, 2012. "Predicting Landscape-Genetic Consequences of Habitat Loss, Fragmentation and Mobility for Multiple Species of Woodland Birds," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-12, February.
    3. Rong Guo & Yujing Bai, 2019. "Simulation of an Urban-Rural Spatial Structure on the Basis of Green Infrastructure Assessment: The Case of Harbin, China," Land, MDPI, vol. 8(12), pages 1-21, December.
    4. Brendan Hoover & Richard S. Middleton & Sean Yaw, 2019. "CostMAP: An open-source software package for developing cost surfaces," Papers 1906.08872, arXiv.org.
    5. Yang, Tianxiang & Jing, Dong & Wang, Shoubing, 2015. "Applying and exploring a new modeling approach of functional connectivity regarding ecological network: A case study on the dynamic lines of space syntax," Ecological Modelling, Elsevier, vol. 318(C), pages 126-137.
    6. Finn, J.T. & Brownscombe, J.W. & Haak, C.R. & Cooke, S.J. & Cormier, R. & Gagne, T. & Danylchuk, A.J., 2014. "Applying network methods to acoustic telemetry data: Modeling the movements of tropical marine fishes," Ecological Modelling, Elsevier, vol. 293(C), pages 139-149.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:12:p:1320-:d:692716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.