IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i6p4907-d1093618.html
   My bibliography  Save this article

Exploring Applicability of Different Ecological Protection Measures for Soil and Water Loss Control of Highway Slope in the Permafrost Area: A Case Study of Qinghai-Tibet Highway in China

Author

Listed:
  • Xiaochun Qin

    (College of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • Anchen Ni

    (College of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • Dongxiao Yang

    (College of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • Bing Chen

    (China Academy of Transportation Science, Beijing 100013, China)

  • Shiliang Liu

    (School of Environment, Beijing Normal University, Beijing 111875, China)

Abstract

A variety of slope water and soil conservation measures have been taken along the Qinghai-Tibet Highway, but the systematic comparison of their erosion control ability needs to be strengthened, especially in the permafrost area. To explore the applicability of different measures to control runoff and sediment yield, field scouring experiments were conducted for different ecologically protected slopes, including turfing (strip, block, full), slope covering (gravel, coconut fiber blanket), and comprehensive measures (three-dimensional net seeding). Compared with the bare slope, the bulk density of the plots with the ecological protection measure decreased, the moisture-holding capacity and the organic matter increased correspondingly, and the average runoff velocity also decreased. The soil loss and runoff had a similar trend of different ecological protection measures. The relationship between the cumulative runoff and sediment yield of different measures exhibited a power function, with the increase of scouring flow and the runoff reduction benefit and sediment reduction benefit in different ecological protection-measured plots showing a decreasing trend. The average runoff reduction benefit decreased from 37.06% to 6.34%, and the average sediment reduction benefit decreased from 43.04% to 10.86%. The comprehensive protection measures had the greatest protection efficiency, followed by turfing, while the cover measure had limited improvement. Soil characteristics, vegetation coverage, and the scouring inflow rate are key factors that influence protection efficiency. The results suggest that comprehensive measures and turfing be taken rather than cover measures or bare slopes. This work provides an experimental reference for ecological protection methods for highway slopes in the permafrost area.

Suggested Citation

  • Xiaochun Qin & Anchen Ni & Dongxiao Yang & Bing Chen & Shiliang Liu, 2023. "Exploring Applicability of Different Ecological Protection Measures for Soil and Water Loss Control of Highway Slope in the Permafrost Area: A Case Study of Qinghai-Tibet Highway in China," IJERPH, MDPI, vol. 20(6), pages 1-19, March.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:6:p:4907-:d:1093618
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/6/4907/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/6/4907/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiaxin Mi & Yongjun Yang & Huping Hou & Shaoliang Zhang & Zhongyi Ding & Yifei Hua, 2022. "Impacts of Ground Fissures on Soil Properties in an Underground Mining Area on the Loess Plateau, China," Land, MDPI, vol. 11(2), pages 1-13, January.
    2. Chunfeng Jia & Baoping Sun & Xinxiao Yu & Xiaohui Yang, 2020. "Analysis of Runoff and Sediment Losses from a Sloped Roadbed under Variable Rainfall Intensities and Vegetation Conditions," Sustainability, MDPI, vol. 12(5), pages 1-11, March.
    3. David Pimentel & Michael Burgess, 2013. "Soil Erosion Threatens Food Production," Agriculture, MDPI, vol. 3(3), pages 1-21, August.
    4. Moses Fayiah & ShiKui Dong & Sphiwe Wezzie Khomera & Syed Aziz Ur Rehman & Mingyue Yang & Jiannan Xiao, 2020. "Status and Challenges of Qinghai–Tibet Plateau’s Grasslands: An Analysis of Causes, Mitigation Measures, and Way Forward," Sustainability, MDPI, vol. 12(3), pages 1-21, February.
    5. Asish Saha & Palash Ghosh & Biswajit Mitra, 2018. "GIS Based Soil Erosion Estimation Using Rusle Model: A Case Study of Upper Kangsabati Watershed, West Bengal, India," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 13(5), pages 119-126, August.
    6. Jifeng Du & Mengxiao Yu & Yanguo Cong & Huanzhe Lv & Zhongyou Yuan, 2022. "Soil Organic Carbon Storage in Urban Green Space and Its Influencing Factors: A Case Study of the 0–20 cm Soil Layer in Guangzhou City," Land, MDPI, vol. 11(9), pages 1-19, September.
    7. Xiaowei Guo & Licong Dai & Qian Li & Dawen Qian & Guangmin Cao & Huakun Zhou & Yangong Du, 2020. "Light Grazing Significantly Reduces Soil Water Storage in Alpine Grasslands on the Qinghai-Tibet Plateau," Sustainability, MDPI, vol. 12(6), pages 1-12, March.
    8. Prabuddh Kumar Mishra & Aman Rai & Kamal Abdelrahman & Suresh Chand Rai & Anuj Tiwari, 2022. "Land Degradation, Overland Flow, Soil Erosion, and Nutrient Loss in the Eastern Himalayas, India," Land, MDPI, vol. 11(2), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katherine del Carmen Camacho-Zorogastúa & Julio Cesar Minga & Jhon Walter Gómez-Lora & Víctor Hugo Gallo-Ramos & Victor Garcés Díaz, 2023. "Evaluation of Soil Loss and Sediment Yield Based on GIS and Remote Sensing Techniques in a Complex Amazon Mountain Basin of Peru: Case Study Mayo River Basin, San Martin Region," Sustainability, MDPI, vol. 15(11), pages 1-21, June.
    2. Venkatachalam Kasthuri Thilagam & Sandrasekaran Manivannan & Om Pal Singh Khola, 2023. "Deriving Land Management Practices for Reduced Nutrient Movement from an Agricultural Watershed Using the AGNPS Model," Sustainability, MDPI, vol. 15(5), pages 1-14, February.
    3. Folasade Mary OWOADE, 2021. "Effects of Land Use Types on Soil Productivity Parameters: A Case Study of Ogbomoso Agricultural Zone, Southern Guinea Savanna Ecology of Nigeria," Noble International Journal of Scientific Research, Noble Academic Publsiher, vol. 5(4), pages 29-40, December.
    4. Carina Mueller & Christopher West & Mairon G. Bastos Lima & Bob Doherty, 2023. "Demand-Side Actors in Agricultural Supply Chain Sustainability: An Assessment of Motivations for Action, Implementation Challenges, and Research Frontiers," World, MDPI, vol. 4(3), pages 1-20, September.
    5. Md. Yamin Kabir & Nasrin Sultana & Md. Abdul Mannan, 2022. "Evaluation Of Nutrient Content Of Composts Made From Water Hyacinth, Kitchen Waste And Manures," Journal of Wastes and Biomass Management (JWBM), Zibeline International Publishing, vol. 4(2), pages 96-101, October.
    6. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    7. Katrin Martens & Sebastian Rogga & Jana Zscheischler & Bernd Pölling & Andreas Obersteg & Annette Piorr, 2022. "Classifying New Hybrid Cooperation Models for Short Food-Supply Chains—Providing a Concept for Assessing Sustainability Transformation in the Urban-Rural Nexus," Land, MDPI, vol. 11(4), pages 1-24, April.
    8. Natanael Bolson & Tadeusz Patzek, 2022. "Evaluation of Rwanda’s Energy Resources," Sustainability, MDPI, vol. 14(11), pages 1-14, May.
    9. Samaneh Bahrololoum & Mojtaba Mahmood Molaei Kermani & Farzaneh Koohzadi, 2022. "Ecopreneurs and agricultural waste management," Journal of Global Entrepreneurship Research, Springer;UNESCO Chair in Entrepreneurship, vol. 12(1), pages 47-51, December.
    10. Koiry, Subrata & Huang, Wei, 2023. "Do ecological protection approaches affect total factor productivity change of cropland production in Sweden?," Ecological Economics, Elsevier, vol. 209(C).
    11. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    12. Daniel Aviles & Ingrid Wesström & Abraham Joel, 2020. "Effect of Vegetation Removal on Soil Erosion and Bank Stability in Agricultural Drainage Ditches," Land, MDPI, vol. 9(11), pages 1-14, November.
    13. Khalid Hussain & Ayesha Ilyas & Irshad Bibi & Thomas Hilger, 2021. "Sustainable Soil Loss Management in Tropical Uplands: Impact on Maize-Chili Cropping Systems," Sustainability, MDPI, vol. 13(11), pages 1-14, June.
    14. Rachit Saxena & Sai Kranthi Vanga & Jin Wang & Valérie Orsat & Vijaya Raghavan, 2018. "Millets for Food Security in the Context of Climate Change: A Review," Sustainability, MDPI, vol. 10(7), pages 1-31, June.
    15. Nawab Khan & Ram L. Ray & Ghulam Raza Sargani & Muhammad Ihtisham & Muhammad Khayyam & Sohaib Ismail, 2021. "Current Progress and Future Prospects of Agriculture Technology: Gateway to Sustainable Agriculture," Sustainability, MDPI, vol. 13(9), pages 1-31, April.
    16. Manuel González-Rosado & Luis Parras-Alcántara & Jesús Aguilera-Huertas & Beatriz Lozano-García, 2022. "No-Tillage Does Not Always Stop the Soil Degradation in Relation to Aggregation and Soil Carbon Storage in Mediterranean Olive Orchards," Agriculture, MDPI, vol. 12(3), pages 1-15, March.
    17. Zhenrao Cai & Dan Gao & Xin Xiao & Linguo Zhou & Chaoyang Fang, 2023. "The Flow of Green Exercise, Its Characteristics, Mechanism, and Pattern in Urban Green Space Networks: A Case Study of Nangchang, China," Land, MDPI, vol. 12(3), pages 1-19, March.
    18. Ziauddin Safari & Sayed Tamim Rahimi & Kamal Ahmed & Ahmad Sharafati & Ghaith Falah Ziarh & Shamsuddin Shahid & Tarmizi Ismail & Nadhir Al-Ansari & Eun-Sung Chung & Xiaojun Wang, 2021. "Estimation of Spatial and Seasonal Variability of Soil Erosion in a Cold Arid River Basin in Hindu Kush Mountainous Region Using Remote Sensing," Sustainability, MDPI, vol. 13(3), pages 1-14, February.
    19. Shangyi Lou & Jin He & Hongwen Li & Qingjie Wang & Caiyun Lu & Wenzheng Liu & Peng Liu & Zhenguo Zhang & Hui Li, 2021. "Current Knowledge and Future Directions for Improving Subsoiling Quality and Reducing Energy Consumption in Conservation Fields," Agriculture, MDPI, vol. 11(7), pages 1-17, June.
    20. Hariklia D. Skilodimou & George D. Bathrellos, 2021. "Natural and Technological Hazards in Urban Areas: Assessment, Planning and Solutions," Sustainability, MDPI, vol. 13(15), pages 1-5, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:6:p:4907-:d:1093618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.