IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i3p407-d771081.html
   My bibliography  Save this article

No-Tillage Does Not Always Stop the Soil Degradation in Relation to Aggregation and Soil Carbon Storage in Mediterranean Olive Orchards

Author

Listed:
  • Manuel González-Rosado

    (SUMAS Research Group, Department of Agricultural Chemistry, Soil Science and Microbiology, Faculty of Science, Agri-Food Campus of International Excellence—ceiA3, University of Cordoba, 14071 Cordoba, Spain)

  • Luis Parras-Alcántara

    (SUMAS Research Group, Department of Agricultural Chemistry, Soil Science and Microbiology, Faculty of Science, Agri-Food Campus of International Excellence—ceiA3, University of Cordoba, 14071 Cordoba, Spain)

  • Jesús Aguilera-Huertas

    (SUMAS Research Group, Department of Agricultural Chemistry, Soil Science and Microbiology, Faculty of Science, Agri-Food Campus of International Excellence—ceiA3, University of Cordoba, 14071 Cordoba, Spain)

  • Beatriz Lozano-García

    (SUMAS Research Group, Department of Agricultural Chemistry, Soil Science and Microbiology, Faculty of Science, Agri-Food Campus of International Excellence—ceiA3, University of Cordoba, 14071 Cordoba, Spain)

Abstract

Intensive tillage (CT) application in Mediterranean olive orchards has threatened soil quality and led to soil degradation. No tillage with bare soil (NT+H) has been considered as an alternative practice to this management system; however, there are discrepancies in the literature on the results of the application of this practice. Our main objective was to assess the impact of continuous tillage and zero tillage on soil aggregate stability, SOC and SON stocks. The study was conducted in a Mediterranean rainfed olive grove under semi-arid conditions in a Calcaric Cambisol, for 16 years evaluating complete soil profiles (0–120 cm depth). In the long-term, the management practices CT1 and NT+H significantly affected aggregate particle size by reducing the percentage of macro-aggregates (>250 μm) and promoting a higher number of micro-aggregates (<250 μm). Nevertheless, NT+H affected the Bw and BC horizons with the increase in the large macroaggregates (>2000 μm) percentage. In relation to these results, the soil structural stability indices showed a significant decrease in both Mean Weight Diameter (MWD) and Geometric Mean Diameter (GMD) values with losses of more than 50% with respect to the initial period (CT0) in the first two horizons. In the long term, both in CT1 and in NT+H, higher SOC concentrations were found in deep horizons showing a C redistribution in depth and important losses in TN values—while, in CT0, macroaggregates contained the highest CPC values, after the long-term both management practices (CT1 and NT+H) affected the C dynamics and were characterised by higher C pool in the microaggregates than in the macroaggregate fractions. Therefore, long-term NT+H and CT1 showed an SOC storage deterioration and increased susceptibility to decomposition, CO 2 emissions and fertility losses. This trend i.e., decreases in SOC stocks following NT, confirms previous studies on the subject and points to nutrient balance impacts.

Suggested Citation

  • Manuel González-Rosado & Luis Parras-Alcántara & Jesús Aguilera-Huertas & Beatriz Lozano-García, 2022. "No-Tillage Does Not Always Stop the Soil Degradation in Relation to Aggregation and Soil Carbon Storage in Mediterranean Olive Orchards," Agriculture, MDPI, vol. 12(3), pages 1-15, March.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:3:p:407-:d:771081
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/3/407/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/3/407/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Pimentel & Michael Burgess, 2013. "Soil Erosion Threatens Food Production," Agriculture, MDPI, vol. 3(3), pages 1-21, August.
    2. Cosmas Parwada & Johan Tol, 2019. "Effects of litter quality on macroaggregates reformation and soil stability in different soil horizons," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(3), pages 1321-1339, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jesús Aguilera-Huertas & Luis Parras-Alcántara & Manuel González-Rosado & Beatriz Lozano-García, 2022. "What Influence Does Conventional Tillage Have on the Ability of Soils to Sequester Carbon, Stabilise It and Become Saturated in the Medium Term? A Case Study in a Traditional Rainfed Olive Grove," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    2. Zhijie Li & Hongguang Liu & Haichang Yang & Tangang Wang, 2023. "Effects of Deep Vertical Rotary Tillage Management Methods on Soil Quality in Saline Cotton Fields in Southern Xinjiang," Agriculture, MDPI, vol. 13(10), pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Folasade Mary OWOADE, 2021. "Effects of Land Use Types on Soil Productivity Parameters: A Case Study of Ogbomoso Agricultural Zone, Southern Guinea Savanna Ecology of Nigeria," Noble International Journal of Scientific Research, Noble Academic Publsiher, vol. 5(4), pages 29-40, December.
    2. Carina Mueller & Christopher West & Mairon G. Bastos Lima & Bob Doherty, 2023. "Demand-Side Actors in Agricultural Supply Chain Sustainability: An Assessment of Motivations for Action, Implementation Challenges, and Research Frontiers," World, MDPI, vol. 4(3), pages 1-20, September.
    3. Md. Yamin Kabir & Nasrin Sultana & Md. Abdul Mannan, 2022. "Evaluation Of Nutrient Content Of Composts Made From Water Hyacinth, Kitchen Waste And Manures," Journal of Wastes and Biomass Management (JWBM), Zibeline International Publishing, vol. 4(2), pages 96-101, October.
    4. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    5. Katrin Martens & Sebastian Rogga & Jana Zscheischler & Bernd Pölling & Andreas Obersteg & Annette Piorr, 2022. "Classifying New Hybrid Cooperation Models for Short Food-Supply Chains—Providing a Concept for Assessing Sustainability Transformation in the Urban-Rural Nexus," Land, MDPI, vol. 11(4), pages 1-24, April.
    6. Natanael Bolson & Tadeusz Patzek, 2022. "Evaluation of Rwanda’s Energy Resources," Sustainability, MDPI, vol. 14(11), pages 1-14, May.
    7. Samaneh Bahrololoum & Mojtaba Mahmood Molaei Kermani & Farzaneh Koohzadi, 2022. "Ecopreneurs and agricultural waste management," Journal of Global Entrepreneurship Research, Springer;UNESCO Chair in Entrepreneurship, vol. 12(1), pages 47-51, December.
    8. Koiry, Subrata & Huang, Wei, 2023. "Do ecological protection approaches affect total factor productivity change of cropland production in Sweden?," Ecological Economics, Elsevier, vol. 209(C).
    9. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    10. Daniel Aviles & Ingrid Wesström & Abraham Joel, 2020. "Effect of Vegetation Removal on Soil Erosion and Bank Stability in Agricultural Drainage Ditches," Land, MDPI, vol. 9(11), pages 1-14, November.
    11. Khalid Hussain & Ayesha Ilyas & Irshad Bibi & Thomas Hilger, 2021. "Sustainable Soil Loss Management in Tropical Uplands: Impact on Maize-Chili Cropping Systems," Sustainability, MDPI, vol. 13(11), pages 1-14, June.
    12. Rachit Saxena & Sai Kranthi Vanga & Jin Wang & Valérie Orsat & Vijaya Raghavan, 2018. "Millets for Food Security in the Context of Climate Change: A Review," Sustainability, MDPI, vol. 10(7), pages 1-31, June.
    13. Nawab Khan & Ram L. Ray & Ghulam Raza Sargani & Muhammad Ihtisham & Muhammad Khayyam & Sohaib Ismail, 2021. "Current Progress and Future Prospects of Agriculture Technology: Gateway to Sustainable Agriculture," Sustainability, MDPI, vol. 13(9), pages 1-31, April.
    14. Katherine del Carmen Camacho-Zorogastúa & Julio Cesar Minga & Jhon Walter Gómez-Lora & Víctor Hugo Gallo-Ramos & Victor Garcés Díaz, 2023. "Evaluation of Soil Loss and Sediment Yield Based on GIS and Remote Sensing Techniques in a Complex Amazon Mountain Basin of Peru: Case Study Mayo River Basin, San Martin Region," Sustainability, MDPI, vol. 15(11), pages 1-21, June.
    15. Ziauddin Safari & Sayed Tamim Rahimi & Kamal Ahmed & Ahmad Sharafati & Ghaith Falah Ziarh & Shamsuddin Shahid & Tarmizi Ismail & Nadhir Al-Ansari & Eun-Sung Chung & Xiaojun Wang, 2021. "Estimation of Spatial and Seasonal Variability of Soil Erosion in a Cold Arid River Basin in Hindu Kush Mountainous Region Using Remote Sensing," Sustainability, MDPI, vol. 13(3), pages 1-14, February.
    16. Shangyi Lou & Jin He & Hongwen Li & Qingjie Wang & Caiyun Lu & Wenzheng Liu & Peng Liu & Zhenguo Zhang & Hui Li, 2021. "Current Knowledge and Future Directions for Improving Subsoiling Quality and Reducing Energy Consumption in Conservation Fields," Agriculture, MDPI, vol. 11(7), pages 1-17, June.
    17. Jinzhong Xu & Hao Li & XiaoBing Liu & Wei Hu & Qingnan Yang & Yanfang Hao & Huaicai Zhen & Xingyi Zhang, 2019. "Gully Erosion Induced by Snowmelt in Northeast China: A Case Study," Sustainability, MDPI, vol. 11(7), pages 1-14, April.
    18. Florence M. Masete & Lawrence Munjonji & Kingsley K. Ayisi & Moshibudi P. Mopape-Mabapa, 2022. "Cowpea Growth and Nitrogen Fixation Performance under Different Mulch Treatments," Agriculture, MDPI, vol. 12(8), pages 1-17, August.
    19. Félicien Majoro & Umaru Garba Wali & Omar Munyaneza & François-Xavier Naramabuye, 2023. "Sustainability Analysis of Soil Erosion Control in Rwanda: Case Study of the Sebeya Watershed," Sustainability, MDPI, vol. 15(3), pages 1-22, January.
    20. Rubaiya Binte Mostafiz & Ryozo Noguchi & Tofael Ahamed, 2021. "Agricultural Land Suitability Assessment Using Satellite Remote Sensing-Derived Soil-Vegetation Indices," Land, MDPI, vol. 10(2), pages 1-26, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:3:p:407-:d:771081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.