IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i3p1937-d1042360.html
   My bibliography  Save this article

Impacts of Wildfire Smoke and Air Pollution on a Pediatric Population with Asthma: A Population-Based Study

Author

Listed:
  • Linn E. Moore

    (Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada)

  • Andre Oliveira

    (Department of Electrical and Software Engineering, University of Calgary, 2500 University Drive, Calgary, AB T3L 2M6, Canada)

  • Raymond Zhang

    (Department of Computer Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada)

  • Laleh Behjat

    (Department of Electrical and Software Engineering, University of Calgary, 2500 University Drive, Calgary, AB T3L 2M6, Canada)

  • Anne Hicks

    (Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada)

Abstract

Wildfires are increasing yearly in number and severity as a part of the evolving climate crisis. These fires are a significant source of air pollution, a common driver of flares in cardiorespiratory disease, including asthma, which is the most common chronic disease of childhood. Poorly controlled asthma leads to significant societal costs through morbidity, mortality, lost school and work time and healthcare utilization. This retrospective cohort study set in Calgary, Canada evaluates the relationship between asthma exacerbations during wildfire smoke events and equivalent low-pollution periods in a pediatric asthma population. Air pollution was based on daily average levels of PM 2.5 . Wildfire smoke events were determined by combining information from provincial databases and local monitors. Exposures were assumed using postal codes in the health record at the time of emergency department visits. Provincial claims data identified 27,501 asthma exacerbations in 57,375 children with asthma between 2010 to 2021. Wildfire smoke days demonstrated an increase in asthma exacerbations over the baseline (incidence rate ratio: 1.13; 95% CI: 1.02–1.24); this was not seen with air pollution in general. Increased rates of asthma exacerbations were also noted yearly in September. Asthma exacerbations were significantly decreased during periods of COVID-19 healthcare precautions.

Suggested Citation

  • Linn E. Moore & Andre Oliveira & Raymond Zhang & Laleh Behjat & Anne Hicks, 2023. "Impacts of Wildfire Smoke and Air Pollution on a Pediatric Population with Asthma: A Population-Based Study," IJERPH, MDPI, vol. 20(3), pages 1-12, January.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:1937-:d:1042360
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/3/1937/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/3/1937/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Charles R. Harris & K. Jarrod Millman & Stéfan J. Walt & Ralf Gommers & Pauli Virtanen & David Cournapeau & Eric Wieser & Julian Taylor & Sebastian Berg & Nathaniel J. Smith & Robert Kern & Matti Picu, 2020. "Array programming with NumPy," Nature, Nature, vol. 585(7825), pages 357-362, September.
    2. Shelby Henry & Maria B. Ospina & Liz Dennett & Anne Hicks, 2021. "Assessing the Risk of Respiratory-Related Healthcare Visits Associated with Wildfire Smoke Exposure in Children 0–18 Years Old: A Systematic Review," IJERPH, MDPI, vol. 18(16), pages 1-37, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan Wang & L. Jeff Hong, 2023. "Large-Scale Inventory Optimization: A Recurrent Neural Networks–Inspired Simulation Approach," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 196-215, January.
    2. Léon Faure & Bastien Mollet & Wolfram Liebermeister & Jean-Loup Faulon, 2023. "A neural-mechanistic hybrid approach improving the predictive power of genome-scale metabolic models," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Claudia Quinteros-Cartaya & Guillermo Solorio-Magaña & Francisco Javier Núñez-Cornú & Felipe de Jesús Escalona-Alcázar & Diana Núñez, 2023. "Microearthquakes in the Guadalajara Metropolitan Zone, Mexico: evidence from buried active faults in Tesistán Valley, Zapopan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 2797-2818, April.
    4. Furqan Dar & Samuel R. Cohen & Diana M. Mitrea & Aaron H. Phillips & Gergely Nagy & Wellington C. Leite & Christopher B. Stanley & Jeong-Mo Choi & Richard W. Kriwacki & Rohit V. Pappu, 2024. "Biomolecular condensates form spatially inhomogeneous network fluids," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. López Pérez, Mario & Mansilla Corona, Ricardo, 2022. "Ordinal synchronization and typical states in high-frequency digital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    6. Jessica M. Vanslambrouck & Sean B. Wilson & Ker Sin Tan & Ella Groenewegen & Rajeev Rudraraju & Jessica Neil & Kynan T. Lawlor & Sophia Mah & Michelle Scurr & Sara E. Howden & Kanta Subbarao & Melissa, 2022. "Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    7. Kiran Krishnamachari & Dylan Lu & Alexander Swift-Scott & Anuar Yeraliyev & Kayla Lee & Weitai Huang & Sim Ngak Leng & Anders Jacobsen Skanderup, 2022. "Accurate somatic variant detection using weakly supervised deep learning," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Larissa Samaan & Leonie Klock & Sandra Weber & Mirjam Reidick & Leonie Ascone & Simone Kühn, 2024. "Low-Level Visual Features of Window Views Contribute to Perceived Naturalness and Mental Health Outcomes," IJERPH, MDPI, vol. 21(5), pages 1-35, May.
    9. Lauren L. Porter & Allen K. Kim & Swechha Rimal & Loren L. Looger & Ananya Majumdar & Brett D. Mensh & Mary R. Starich & Marie-Paule Strub, 2022. "Many dissimilar NusG protein domains switch between α-helix and β-sheet folds," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Matthew Rosenblatt & Link Tejavibulya & Rongtao Jiang & Stephanie Noble & Dustin Scheinost, 2024. "Data leakage inflates prediction performance in connectome-based machine learning models," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Jackie Grant & Mark Hindmarsh & Sergey E. Koposov, 2022. "The distribution of loss to future USS pensions due to the UUK cuts of April 2022," Papers 2206.06201, arXiv.org.
    12. Sayedali Shetab Boushehri & Katharina Essig & Nikolaos-Kosmas Chlis & Sylvia Herter & Marina Bacac & Fabian J. Theis & Elke Glasmacher & Carsten Marr & Fabian Schmich, 2023. "Explainable machine learning for profiling the immunological synapse and functional characterization of therapeutic antibodies," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    13. Shukla, Mohak & Thakur, Ajay D., 2022. "An Enquiry on similarities between Renormalization Group and Auto-Encoders using Transfer Learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    14. Borofsky, Talia & Feldman, Marcus W. & Ram, Yoav, 2024. "Cultural transmission, competition for prey, and the evolution of cooperative hunting," Theoretical Population Biology, Elsevier, vol. 156(C), pages 12-21.
    15. Khaled Akkad & David He, 2023. "A dynamic mode decomposition based deep learning technique for prognostics," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2207-2224, June.
    16. Romain Fournier & Zoi Tsangalidou & David Reich & Pier Francesco Palamara, 2023. "Haplotype-based inference of recent effective population size in modern and ancient DNA samples," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Laura Portell & Sergi Morera & Helena Ramalhinho, 2022. "Door-to-Door Transportation Services for Reduced Mobility Population: A Descriptive Analytics of the City of Barcelona," IJERPH, MDPI, vol. 19(8), pages 1-20, April.
    18. Caroline Haimerl & Douglas A. Ruff & Marlene R. Cohen & Cristina Savin & Eero P. Simoncelli, 2023. "Targeted V1 comodulation supports task-adaptive sensory decisions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    19. Jonas Bunsen & Matthias Finkbeiner, 2022. "An Introductory Review of Input-Output Analysis in Sustainability Sciences Including Potential Implications of Aggregation," Sustainability, MDPI, vol. 15(1), pages 1-24, December.
    20. Petros C. Lazaridis & Ioannis E. Kavvadias & Konstantinos Demertzis & Lazaros Iliadis & Lazaros K. Vasiliadis, 2023. "Interpretable Machine Learning for Assessing the Cumulative Damage of a Reinforced Concrete Frame Induced by Seismic Sequences," Sustainability, MDPI, vol. 15(17), pages 1-31, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:1937-:d:1042360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.