IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i24p16562-d998809.html
   My bibliography  Save this article

Evaluation and Analysis of Design Elements for Sustainable Renewal of Urban Vulnerable Spaces

Author

Listed:
  • Changzheng Gao

    (School of Public Administration, China University of Geosciences, Wuhan 430074, China
    School of Architecture, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)

  • Juepin Hou

    (School of Architecture, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)

  • Yanchen Ma

    (School of Architecture, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)

  • Jianxin Yang

    (School of Public Administration, China University of Geosciences, Wuhan 430074, China)

Abstract

The sustainable renewal design of urban vulnerable spaces is critical for urban space quality improvement. Taking Zhengzhou and surrounding cities as examples, a cognitive framework of urban vulnerable spaces is constructed. The three types of urban vulnerable spaces are vulnerable population, vulnerable cultural, and vulnerable forgotten spaces. Their sustainable renewal design elements comprise multidimensional factors, such as functional requirement, space organization, activity facility, urban context continuation, and material texture. The design elements for the sustainable update of urban vulnerable spaces are evaluated by grey relation analysis (GRA), and update strategies are proposed. The result shows that (1) vulnerable population spaces were shown to have the highest sensitivity to functional requirements and activity facility design elements, while vulnerable cultural spaces have high relevance to urban context continuation and functional requirement design elements. Furthermore, space organization, activity facility, and urban context continuation design elements all show high relevance and importance in vulnerable forgotten spaces. (2) The update of vulnerable population spaces should be designed to achieve functional communion; vulnerable cultural spaces can be reshaped through urban context implantation, and vulnerable forgotten spaces can use space creation to enhance ecological space continuity, achieving sustainable renewal. The study provides a reference for decision-making for improving urban vulnerable habitats and the sustainable renewal design of atypical urban space types.

Suggested Citation

  • Changzheng Gao & Juepin Hou & Yanchen Ma & Jianxin Yang, 2022. "Evaluation and Analysis of Design Elements for Sustainable Renewal of Urban Vulnerable Spaces," IJERPH, MDPI, vol. 19(24), pages 1-14, December.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:24:p:16562-:d:998809
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/24/16562/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/24/16562/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Awasthi, Anjali & Omrani, Hichem & Gerber, Philippe, 2018. "Investigating ideal-solution based multicriteria decision making techniques for sustainability evaluation of urban mobility projects," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 247-259.
    2. Paköz, Muhammed Ziya & Yaratgan, Dilara & Şahin, Aydan, 2022. "Re-mapping urban vitality through Jane Jacobs’ criteria: The case of Kayseri, Turkey," Land Use Policy, Elsevier, vol. 114(C).
    3. Pan, Wenjian & Du, Juan, 2021. "Towards sustainable urban transition: A critical review of strategies and policies of urban village renewal in Shenzhen, China," Land Use Policy, Elsevier, vol. 111(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinkun Yang & Linchuan Yang & Haitao Ma, 2022. "Community Participation Strategy for Sustainable Urban Regeneration in Xiamen, China," Land, MDPI, vol. 11(5), pages 1-14, April.
    2. Lo, Huai-Wei & Fang, Tzu-Yi & Lin, Sheng-Wei, 2024. "Integrating technological and strategic analysis: Evaluating the key determinants of transportation sustainability in taipei Mass Rapid Transit using the Rough-Fermatean DEMATEL approach," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
    3. Weixuan Chen & Ali Cheshmehzangi & Eugenio Mangi & Timothy Heath, 2022. "Implementations of China’s New-Type Urbanisation: A Comparative Analysis between Targets and Practices of Key Elements’ Policies," Sustainability, MDPI, vol. 14(10), pages 1-15, May.
    4. Yue Wu & Yi Zhang & Zexu Han & Siyuan Zhang & Xiangyi Li, 2022. "Examining the Planning Policies of Urban Villages Guided by China’s New-Type Urbanization: A Case Study of Hangzhou City," IJERPH, MDPI, vol. 19(24), pages 1-25, December.
    5. Sławomira Hajduk, 2021. "Multi-Criteria Analysis in the Decision-Making Approach for the Linear Ordering of Urban Transport Based on TOPSIS Technique," Energies, MDPI, vol. 15(1), pages 1-30, December.
    6. Wojciech Keblowski & Frédéric Dobruszkes & Kobe Boussauw, 2022. "Moving past sustainable transport studies: Towards a critical perspective on urban transport," ULB Institutional Repository 2013/341191, ULB -- Universite Libre de Bruxelles.
    7. Ömer Kaya & Kadir Diler Alemdar & Tiziana Campisi & Ahmet Tortum & Merve Kayaci Çodur, 2021. "The Development of Decarbonisation Strategies: A Three-Step Methodology for the Suitable Analysis of Current EVCS Locations Applied to Istanbul, Turkey," Energies, MDPI, vol. 14(10), pages 1-21, May.
    8. Raj, Alok & Kumar, J. Ajith & Bansal, Prateek, 2020. "A multicriteria decision making approach to study barriers to the adoption of autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 122-137.
    9. Beibei Hu & Airong Xu & Xianlei Dong, 2022. "Evaluating the Comprehensive Development Level and Coordinated Relationships of Urban Multimodal Transportation: A Case Study of China’s Major Cities," Land, MDPI, vol. 11(11), pages 1-28, November.
    10. Yi Yang & Tetsuo Kidokoro & Fumihiko Seta & Ziyi Wang, 2023. "Are Local Residents Benefiting from the Latest Urbanization Dynamic in China? China’s Characteristic Town Strategy from a Resident Perspective: Evidence from Two Cases in Hangzhou," Land, MDPI, vol. 12(2), pages 1-37, February.
    11. Yue Wu & Yi Zhang, 2022. "Formal and Informal Planning-Dominated Urban Village Development: A Comparative Study of Luojiazhuang and Yangjiapailou in Hangzhou, China," Land, MDPI, vol. 11(4), pages 1-23, April.
    12. Jinghu Pan & Xiuwei Zhu & Xin Zhang, 2022. "Urban Vitality Measurement and Influence Mechanism Detection in China," IJERPH, MDPI, vol. 20(1), pages 1-24, December.
    13. Kębłowski, Wojciech & Dobruszkes, Frédéric & Boussauw, Kobe, 2022. "Moving past sustainable transport studies: Towards a critical perspective on urban transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 74-83.
    14. Song, Zhao-Yu & Lin, Cheng-Wei & Feng, Xuehao & Lee, Paul Tae-Woo, 2024. "An empirical study of the performance of the sixth generation ports model with smart ports with reference to major container ports in mainland China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    15. Siqi Liu & Biao Peng & Jianfeng Li, 2022. "Ecological Risk Evaluation and Source Identification of Heavy Metal Pollution in Urban Village Soil Based on XRF Technique," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    16. Ilaria Henke & Armando Cartenì & Clorinda Molitierno & Assunta Errico, 2020. "Decision-Making in the Transport Sector: A Sustainable Evaluation Method for Road Infrastructure," Sustainability, MDPI, vol. 12(3), pages 1-19, January.
    17. Ilaria Henke & Armando Cartenì & Luigi Di Francesco, 2020. "A Sustainable Evaluation Processes for Investments in the Transport Sector: A Combined Multi-Criteria and Cost–Benefit Analysis for a New Highway in Italy," Sustainability, MDPI, vol. 12(23), pages 1-26, November.
    18. Tiziana Campisi & Nurten Akgün & Dario Ticali & Giovanni Tesoriere, 2020. "Exploring Public Opinion on Personal Mobility Vehicle Use: A Case Study in Palermo, Italy," Sustainability, MDPI, vol. 12(13), pages 1-15, July.
    19. Juanpera, M. & Ferrer-Martí, L. & Diez-Montero, R. & Ferrer, I. & Castro, L. & Escalante, H. & Garfí, M., 2022. "A robust multicriteria analysis for the post-treatment of digestate from low-tech digesters. Boosting the circular bioeconomy of small-scale farms in Colombia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    20. Ni Zhang & Li Zhu & Jiang Li & Yilin Sun & Xiaokang Wang & Honglin Wu, 2023. "The Spatial Interface of Informal Settlements to Women’s Safety: A Human-Scale Measurement for the Largest Urban Village in Changsha, Hunan Province, China," Sustainability, MDPI, vol. 15(15), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:24:p:16562-:d:998809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.